Spaces:
Runtime error
Runtime error
from datetime import date | |
from datetime import datetime | |
import re | |
import numpy as np | |
import pandas as pd | |
from PIL import Image | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import streamlit as st | |
import time | |
from plotly.subplots import make_subplots | |
# Read CSV file into pandas and extract timestamp data | |
dfSentiment = pd.read_csv('sentiment_data.csv') ### YOUR LINE OF CODE HERE | |
dfSentiment['timestamp'] = [datetime.strptime(dt, '%Y-%m-%d') for dt in dfSentiment['timestamp'].tolist()] | |
# Multi-select columns to build chart | |
col_list = dfSentiment.columns.tolist() ### YOUR LINE OF CODE HERE #### Extract columns into a list | |
r_sentiment = re.compile(".*sentiment") | |
sentiment_cols = list(filter(r_sentiment.match, col_list)) ### YOUR LINE OF CODE HERE | |
r_post = re.compile(".*post") | |
post_list = list(filter(r_post.match, col_list)) ### YOUR LINE OF CODE HERE | |
r_perc= re.compile(".*perc") | |
perc_list = list(filter(r_perc.match, col_list)) | |
r_close = re.compile(".*close") | |
close_list = list(filter(r_close.match, col_list)) | |
r_volume = re.compile(".*volume") | |
volume_list = list(filter(r_volume.match, col_list)) | |
sentiment_cols = sentiment_cols + post_list | |
stocks_cols = perc_list + close_list + volume_list ### YOUR LINE OF CODE HERE | |
# Config for page | |
st.set_page_config( | |
page_title= 'Sentiment Stock Experiment', ### YOUR LINE OF CODE HERE | |
page_icon='✅', | |
layout='wide', | |
) | |
with st.sidebar: | |
# FourthBrain logo to sidebar | |
fourthbrain_logo = Image.open('./images/fourthbrain_logo.png') | |
st.image([fourthbrain_logo], width=300) | |
# Date selection filters | |
start_date_filter = st.date_input( | |
### YOUR LINE OF CODE HERE | |
'Start Date', | |
min(dfSentiment['timestamp']), | |
min_value=min(dfSentiment['timestamp']), | |
max_value=max(dfSentiment['timestamp']) | |
) | |
end_date_filter = st.date_input( | |
'End Date', | |
max(dfSentiment['timestamp']), | |
min_value=min(dfSentiment['timestamp']), | |
max_value=max(dfSentiment['timestamp']) | |
) | |
sentiment_select = st.selectbox('Select Sentiment/Reddit Data', sentiment_cols) ### YOUR LINE OF CODE HERE | |
stock_select =st.selectbox('Select Stock Data', stocks_cols) ### YOUR LINE OF CODE HERE | |
# Banner with TSLA and Reddit images | |
tsla_logo = Image.open('./images/tsla_logo.png') ### YOUR LINE OF CODE HERE | |
reddit_logo = Image.open('./images/reddit_logo.png') | |
st.image([tsla_logo, reddit_logo], width=200) | |
# dashboard title | |
### YOUR LINE OF CODE HERE | |
st.title('Sentiment Stock Experiment') | |
## dataframe filter | |
# start date | |
dfSentiment = dfSentiment[dfSentiment['timestamp'] >= datetime(start_date_filter.year, start_date_filter.month, start_date_filter.day)] | |
# end date | |
dfSentiment = dfSentiment[dfSentiment['timestamp'] <= datetime(end_date_filter.year, end_date_filter.month, end_date_filter.day)] ### YOUR LINE OF CODE HERE | |
dfSentiment = dfSentiment.reset_index(drop=True) | |
# creating a single-element container | |
placeholder = st.empty() ### YOUR LINE OF CODE HERE | |
# near real-time / live feed simulation | |
for i in range(1, len(dfSentiment)-1): | |
# creating KPIs | |
last_close = dfSentiment['close'][i] | |
last_close_lag1 = dfSentiment['close'][i-1] | |
last_sentiment = dfSentiment[sentiment_select][i] ### YOUR LINE OF CODE HERE | |
last_sentiment_lag1 = dfSentiment[sentiment_select][i-1] ### YOUR LINE OF CODE HERE | |
with placeholder.container(): | |
# create columns | |
kpi1, kpi2, kpi3 = st.columns(3) | |
# fill in those three columns with respective metrics or KPIs | |
kpi1.metric( | |
label='Sentiment Score', | |
value=round(last_sentiment, 3), | |
delta=round(last_sentiment_lag1, 3), | |
) | |
kpi2.metric( | |
label='Last Closing Price', | |
### YOUR LINE 1 OF CODE HERE | |
value=round(last_close, 3), | |
### YOUR LINE 2 OF CODE HERE | |
delta=round(last_close_lag1, 3), | |
) | |
# create two columns for charts | |
fig_col1, fig_col2 = st.columns(2) | |
with fig_col1: | |
# Add traces | |
fig=make_subplots(specs=[[{"secondary_y":True}]]) | |
fig.add_trace( | |
go.Scatter( | |
x=dfSentiment['timestamp'][0:i], | |
y=dfSentiment[sentiment_select][0:i], | |
name=sentiment_select, | |
mode='lines', | |
hoverinfo='none', | |
) | |
) | |
if sentiment_select.startswith('perc') == True: | |
### YOUR LINE OF CODE HERE | |
yaxis_label = '% Change Sentiment' | |
elif sentiment_select in sentiment_cols: | |
### YOUR LINE OF CODE HERE | |
yaxis_label = 'Sentiment Score' | |
elif sentiment_select in post_list: | |
yaxis_label = 'Volume' | |
fig.layout.yaxis.title=yaxis_label | |
if stock_select.startswith('perc') == True: | |
fig.add_trace( | |
go.Scatter( | |
x=dfSentiment['timestamp'][0:i], | |
y=dfSentiment[stock_select][0:i], | |
name=stock_select, | |
mode='lines', | |
hoverinfo='none', | |
yaxis='y2', | |
) | |
) | |
fig.layout.yaxis2.title='% Change Stock Price ($US)' | |
elif stock_select == 'volume': | |
fig.add_trace( | |
go.Scatter( | |
x=dfSentiment['timestamp'][0:i], | |
y=dfSentiment[stock_select][0:i], | |
name=stock_select, | |
mode='lines', | |
hoverinfo='none', | |
yaxis='y2', | |
) | |
) | |
fig.layout.yaxis2.title="Shares Traded" | |
else: | |
fig.add_trace( | |
go.Scatter( | |
x=dfSentiment['timestamp'][0:i], | |
y=dfSentiment[stock_select][0:i], | |
name=stock_select, | |
mode='lines', | |
hoverinfo='none', | |
yaxis='y2', | |
) | |
) | |
fig.layout.yaxis2.title='Stock Price ($USD)' | |
fig.layout.xaxis.title='Timestamp' | |
# write the figure throught streamlit | |
### YOUR LINE OF CODE HERE | |
st.plotly_chart(fig) | |
st.markdown('### Detailed Data View') | |
st.dataframe(dfSentiment.iloc[:, 1:][0:i]) | |
time.sleep(1) | |