Anonymous941 commited on
Commit
fb94a5d
·
1 Parent(s): a5a93d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py CHANGED
@@ -3,3 +3,43 @@ from datasets import load_dataset, Image
3
 
4
  dataset = load_dataset("botmaster/mother-2-battle-sprites", split="train")
5
  gr.Interface.load("models/templates/text-to-image").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  dataset = load_dataset("botmaster/mother-2-battle-sprites", split="train")
5
  gr.Interface.load("models/templates/text-to-image").launch()
6
+
7
+ import torch
8
+ import nltk
9
+ import io
10
+ import base64
11
+ import shutil
12
+ from torchvision import transforms
13
+
14
+ from pytorch_pretrained_biggan import BigGAN, one_hot_from_names, truncated_noise_sample
15
+
16
+ class PreTrainedPipeline():
17
+ def __init__(self, path=""):
18
+ """
19
+ Initialize model
20
+ """
21
+ nltk.download('wordnet')
22
+ self.model = BigGAN.from_pretrained(path)
23
+ self.truncation = 0.1
24
+
25
+ def __call__(self, inputs: str):
26
+ """
27
+ Args:
28
+ inputs (:obj:`str`):
29
+ a string containing some text
30
+ Return:
31
+ A :obj:`PIL.Image` with the raw image representation as PIL.
32
+ """
33
+ class_vector = one_hot_from_names([inputs], batch_size=1)
34
+ if type(class_vector) == type(None):
35
+ raise ValueError("Input is not in ImageNet")
36
+ noise_vector = truncated_noise_sample(truncation=self.truncation, batch_size=1)
37
+ noise_vector = torch.from_numpy(noise_vector)
38
+ class_vector = torch.from_numpy(class_vector)
39
+ with torch.no_grad():
40
+ output = self.model(noise_vector, class_vector, self.truncation)
41
+
42
+ # Scale image
43
+ img = output[0]
44
+ img = (img + 1) / 2.0
45
+ img = transforms.ToPILImage()(img)