Spaces:
Runtime error
Runtime error
import requests | |
import streamlit as st | |
import time | |
from transformers import pipeline | |
import os | |
from .utils import query | |
HF_AUTH_TOKEN = os.getenv('HF_AUTH_TOKEN') | |
headers = {"Authorization": f"Bearer {HF_AUTH_TOKEN}"} | |
def write(): | |
st.markdown("# Part-of-Speech Tagging") | |
st.sidebar.header("Part-of-Speech Tagging") | |
st.write( | |
'''Here, you can detect part-of-speech tags in your text using the fine-tuned TURNA POS models.''' | |
) | |
# Sidebar | |
# Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py | |
st.sidebar.subheader("Configurable parameters") | |
model_name = st.sidebar.selectbox( | |
"Model Selector", | |
options=[ | |
"turna_pos_boun", | |
"turna_pos_imst" | |
], | |
index=0, | |
) | |
max_new_tokens = st.sidebar.number_input( | |
"Maximum length", | |
min_value=0, | |
max_value=64, | |
value=64, | |
help="The maximum length of the sequence to be generated.", | |
) | |
length_penalty = st.sidebar.number_input( | |
"Length penalty", | |
value=2.0, | |
help=" length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences. ", | |
) | |
no_repeat_ngram_size = st.sidebar.number_input( | |
"No Repeat N-Gram Size", | |
min_value=0, | |
value=3, | |
help="If set to int > 0, all ngrams of that size can only occur once.", | |
) | |
input_text = st.text_area(label='Enter a text: ', height=100, | |
value="Çünkü her kişinin bir başka yolu, bir başka yöntemi olmak gerektir.") | |
url = ("https://api-inference.huggingface.co/models/boun-tabi-LMG/" + model_name.lower()) | |
params = {"length_penalty": length_penalty, "no_repeat_ngram_size": no_repeat_ngram_size, "max_new_tokens": max_new_tokens } | |
if st.button("Generate"): | |
with st.spinner('Generating...'): | |
output = query(input_text, url, params) | |
st.success(output) |