Spaces:
bpheng
/
Runtime error

File size: 5,413 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

from dataclasses import dataclass
from typing import Any, Optional
import torch

from detectron2.structures import BoxMode, Instances

from .utils import AnnotationsAccumulator


@dataclass
class PackedCseAnnotations:
    x_gt: torch.Tensor
    y_gt: torch.Tensor
    coarse_segm_gt: Optional[torch.Tensor]
    vertex_mesh_ids_gt: torch.Tensor
    vertex_ids_gt: torch.Tensor
    bbox_xywh_gt: torch.Tensor
    bbox_xywh_est: torch.Tensor
    point_bbox_with_dp_indices: torch.Tensor
    point_bbox_indices: torch.Tensor
    bbox_indices: torch.Tensor


class CseAnnotationsAccumulator(AnnotationsAccumulator):
    """
    Accumulates annotations by batches that correspond to objects detected on
    individual images. Can pack them together into single tensors.
    """

    def __init__(self):
        self.x_gt = []
        self.y_gt = []
        self.s_gt = []
        self.vertex_mesh_ids_gt = []
        self.vertex_ids_gt = []
        self.bbox_xywh_gt = []
        self.bbox_xywh_est = []
        self.point_bbox_with_dp_indices = []
        self.point_bbox_indices = []
        self.bbox_indices = []
        self.nxt_bbox_with_dp_index = 0
        self.nxt_bbox_index = 0

    def accumulate(self, instances_one_image: Instances):
        """
        Accumulate instances data for one image

        Args:
            instances_one_image (Instances): instances data to accumulate
        """
        boxes_xywh_est = BoxMode.convert(
            instances_one_image.proposal_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS
        )
        boxes_xywh_gt = BoxMode.convert(
            instances_one_image.gt_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS
        )
        n_matches = len(boxes_xywh_gt)
        assert n_matches == len(
            boxes_xywh_est
        ), f"Got {len(boxes_xywh_est)} proposal boxes and {len(boxes_xywh_gt)} GT boxes"
        if not n_matches:
            # no detection - GT matches
            return
        if (
            not hasattr(instances_one_image, "gt_densepose")
            or instances_one_image.gt_densepose is None
        ):
            # no densepose GT for the detections, just increase the bbox index
            self.nxt_bbox_index += n_matches
            return
        for box_xywh_est, box_xywh_gt, dp_gt in zip(
            boxes_xywh_est, boxes_xywh_gt, instances_one_image.gt_densepose
        ):
            if (dp_gt is not None) and (len(dp_gt.x) > 0):
                # pyre-fixme[6]: For 1st argument expected `Tensor` but got `float`.
                # pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`.
                self._do_accumulate(box_xywh_gt, box_xywh_est, dp_gt)
            self.nxt_bbox_index += 1

    def _do_accumulate(self, box_xywh_gt: torch.Tensor, box_xywh_est: torch.Tensor, dp_gt: Any):
        """
        Accumulate instances data for one image, given that the data is not empty

        Args:
            box_xywh_gt (tensor): GT bounding box
            box_xywh_est (tensor): estimated bounding box
            dp_gt: GT densepose data with the following attributes:
             - x: normalized X coordinates
             - y: normalized Y coordinates
             - segm: tensor of size [S, S] with coarse segmentation
             -
        """
        self.x_gt.append(dp_gt.x)
        self.y_gt.append(dp_gt.y)
        if hasattr(dp_gt, "segm"):
            self.s_gt.append(dp_gt.segm.unsqueeze(0))
        self.vertex_ids_gt.append(dp_gt.vertex_ids)
        self.vertex_mesh_ids_gt.append(torch.full_like(dp_gt.vertex_ids, dp_gt.mesh_id))
        self.bbox_xywh_gt.append(box_xywh_gt.view(-1, 4))
        self.bbox_xywh_est.append(box_xywh_est.view(-1, 4))
        self.point_bbox_with_dp_indices.append(
            torch.full_like(dp_gt.vertex_ids, self.nxt_bbox_with_dp_index)
        )
        self.point_bbox_indices.append(torch.full_like(dp_gt.vertex_ids, self.nxt_bbox_index))
        self.bbox_indices.append(self.nxt_bbox_index)
        self.nxt_bbox_with_dp_index += 1

    def pack(self) -> Optional[PackedCseAnnotations]:
        """
        Pack data into tensors
        """
        if not len(self.x_gt):
            # TODO:
            # returning proper empty annotations would require
            # creating empty tensors of appropriate shape and
            # type on an appropriate device;
            # we return None so far to indicate empty annotations
            return None
        return PackedCseAnnotations(
            x_gt=torch.cat(self.x_gt, 0),
            y_gt=torch.cat(self.y_gt, 0),
            vertex_mesh_ids_gt=torch.cat(self.vertex_mesh_ids_gt, 0),
            vertex_ids_gt=torch.cat(self.vertex_ids_gt, 0),
            # ignore segmentation annotations, if not all the instances contain those
            coarse_segm_gt=torch.cat(self.s_gt, 0)
            if len(self.s_gt) == len(self.bbox_xywh_gt)
            else None,
            bbox_xywh_gt=torch.cat(self.bbox_xywh_gt, 0),
            bbox_xywh_est=torch.cat(self.bbox_xywh_est, 0),
            point_bbox_with_dp_indices=torch.cat(self.point_bbox_with_dp_indices, 0),
            point_bbox_indices=torch.cat(self.point_bbox_indices, 0),
            bbox_indices=torch.as_tensor(
                self.bbox_indices, dtype=torch.long, device=self.x_gt[0].device
            ),
        )