Spaces:
bpheng
/
Runtime error

File size: 13,876 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
// Copyright (c) Facebook, Inc. and its affiliates.
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>

// TODO make it in a common file
#define CUDA_1D_KERNEL_LOOP(i, n)                            \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
       i += blockDim.x * gridDim.x)

// Note: this implementation originates from the Caffe2 ROIAlignRotated Op
// and PyTorch ROIAlign (non-rotated) Op implementations.
// The key difference between this implementation and those ones is
// we don't do "legacy offset" in this version, as there aren't many previous
// works, if any, using the "legacy" ROIAlignRotated Op.
// This would make the interface a bit cleaner.

namespace detectron2 {

namespace {

template <typename T>
__device__ T bilinear_interpolate(
    const T* input,
    const int height,
    const int width,
    T y,
    T x) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y < 0) {
    y = 0;
  }

  if (x < 0) {
    x = 0;
  }

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  // do bilinear interpolation
  T v1 = input[y_low * width + x_low];
  T v2 = input[y_low * width + x_high];
  T v3 = input[y_high * width + x_low];
  T v4 = input[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
__device__ void bilinear_interpolate_gradient(
    const int height,
    const int width,
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y < 0) {
    y = 0;
  }

  if (x < 0) {
    x = 0;
  }

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  return;
}

} // namespace

template <typename T>
__global__ void RoIAlignRotatedForward(
    const int nthreads,
    const T* input,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    const T* rois,
    T* top_data) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* current_roi = rois + n * 6;
    int roi_batch_ind = current_roi[0];

    // Do not use rounding; this implementation detail is critical
    // ROIAlignRotated supports align == true, i.e., continuous coordinate
    // by default, thus the 0.5 offset
    T offset = (T)0.5;
    T roi_center_w = current_roi[1] * spatial_scale - offset;
    T roi_center_h = current_roi[2] * spatial_scale - offset;
    T roi_width = current_roi[3] * spatial_scale;
    T roi_height = current_roi[4] * spatial_scale;
    T theta = current_roi[5] * M_PI / 180.0;
    T cos_theta = cos(theta);
    T sin_theta = sin(theta);

    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input =
        input + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    // Appropriate translation needs to be applied after.
    T roi_start_h = -roi_height / 2.0;
    T roi_start_w = -roi_width / 2.0;

    // We do average (inte  gral) pooling inside a bin
    const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T yy = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T xx = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        // Rotate by theta around the center and translate
        T y = yy * cos_theta - xx * sin_theta + roi_center_h;
        T x = yy * sin_theta + xx * cos_theta + roi_center_w;

        T val = bilinear_interpolate(offset_input, height, width, y, x);
        output_val += val;
      }
    }
    output_val /= count;

    top_data[index] = output_val;
  }
}

template <typename T>
__global__ void RoIAlignRotatedBackwardFeature(
    const int nthreads,
    const T* top_diff,
    const int num_rois,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    T* bottom_diff,
    const T* rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* current_roi = rois + n * 6;
    int roi_batch_ind = current_roi[0];

    // Do not use rounding; this implementation detail is critical
    // ROIAlignRotated supports align == true, i.e., continuous coordinate
    // by default, thus the 0.5 offset
    T offset = (T)0.5;
    T roi_center_w = current_roi[1] * spatial_scale - offset;
    T roi_center_h = current_roi[2] * spatial_scale - offset;
    T roi_width = current_roi[3] * spatial_scale;
    T roi_height = current_roi[4] * spatial_scale;
    T theta = current_roi[5] * M_PI / 180.0;
    T cos_theta = cos(theta);
    T sin_theta = sin(theta);

    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_bottom_diff =
        bottom_diff + (roi_batch_ind * channels + c) * height * width;

    int top_offset = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_top_diff = top_diff + top_offset;
    const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
    // Appropriate translation needs to be applied after.
    T roi_start_h = -roi_height / 2.0;
    T roi_start_w = -roi_width / 2.0;

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T yy = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T xx = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        // Rotate by theta around the center and translate
        T y = yy * cos_theta - xx * sin_theta + roi_center_h;
        T x = yy * sin_theta + xx * cos_theta + roi_center_w;

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high);

        T g1 = top_diff_this_bin * w1 / count;
        T g2 = top_diff_this_bin * w2 / count;
        T g3 = top_diff_this_bin * w3 / count;
        T g4 = top_diff_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          atomicAdd(
              offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1));
          atomicAdd(
              offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2));
          atomicAdd(
              offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3));
          atomicAdd(
              offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4));
        } // if
      } // ix
    } // iy
  } // CUDA_1D_KERNEL_LOOP
} // RoIAlignRotatedBackward

at::Tensor ROIAlignRotated_forward_cuda(
    const at::Tensor& input,
    const at::Tensor& rois,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio) {
  AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor");
  AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIAlignRotated_forward_cuda";
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});
  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  auto output = at::empty(
      {num_rois, channels, pooled_height, pooled_width}, input.options());
  auto output_size = num_rois * pooled_height * pooled_width * channels;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  dim3 grid(std::min(
      at::cuda::ATenCeilDiv(
          static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
  dim3 block(512);

  if (output.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return output;
  }

  auto input_ = input.contiguous(), rois_ = rois.contiguous();
  AT_DISPATCH_FLOATING_TYPES(
      input.scalar_type(), "ROIAlignRotated_forward", [&] {
        RoIAlignRotatedForward<scalar_t><<<grid, block, 0, stream>>>(
            output_size,
            input_.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            rois_.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>());
      });
  cudaDeviceSynchronize();
  AT_CUDA_CHECK(cudaGetLastError());
  return output;
}

// TODO remove the dependency on input and use instead its sizes -> save memory
at::Tensor ROIAlignRotated_backward_cuda(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int batch_size,
    const int channels,
    const int height,
    const int width,
    const int sampling_ratio) {
  AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor");
  AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};
  at::CheckedFrom c = "ROIAlign_backward_cuda";
  at::checkAllSameGPU(c, {grad_t, rois_t});
  at::checkAllSameType(c, {grad_t, rois_t});
  at::cuda::CUDAGuard device_guard(grad.device());

  auto num_rois = rois.size(0);
  auto grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  dim3 grid(std::min(
      at::cuda::ATenCeilDiv(
          static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  auto grad_ = grad.contiguous(), rois_ = rois.contiguous();
  AT_DISPATCH_FLOATING_TYPES(
      grad.scalar_type(), "ROIAlignRotated_backward", [&] {
        RoIAlignRotatedBackwardFeature<scalar_t><<<grid, block, 0, stream>>>(
            grad.numel(),
            grad_.data_ptr<scalar_t>(),
            num_rois,
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            grad_input.data_ptr<scalar_t>(),
            rois_.data_ptr<scalar_t>());
      });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}

} // namespace detectron2