Spaces:
bpheng
/
Runtime error

File size: 3,206 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
## Getting Started with Detectron2

This document provides a brief intro of the usage of builtin command-line tools in detectron2.

For a tutorial that involves actual coding with the API,
see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
which covers how to run inference with an
existing model, and how to train a builtin model on a custom dataset.

For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).


### Inference Demo with Pre-trained Models

1. Pick a model and its config file from
	[model zoo](MODEL_ZOO.md),
	for example, `mask_rcnn_R_50_FPN_3x.yaml`.
2. We provide `demo.py` that is able to run builtin standard models. Run it with:
```
cd demo/
python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
  --input input1.jpg input2.jpg \
  [--other-options]
  --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
```
The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
This command will run the inference and show visualizations in an OpenCV window.

For details of the command line arguments, see `demo.py -h` or look at its source code
to understand its behavior. Some common arguments are:
* To run __on your webcam__, replace `--input files` with `--webcam`.
* To run __on a video__, replace `--input files` with `--video-input video.mp4`.
* To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
* To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.


### Training & Evaluation in Command Line

We provide a script in "tools/{,plain_}train_net.py", that is made to train
all the configs provided in detectron2.
You may want to use it as a reference to write your own training script.

To train a model with "train_net.py", first
setup the corresponding datasets following
[datasets/README.md](./datasets/README.md),
then run:
```
cd tools/
./train_net.py --num-gpus 8 \
	--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
```

The configs are made for 8-GPU training.
To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
```
./train_net.py \
	--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
	--num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
```

For most models, CPU training is not supported.

To evaluate a model's performance, use
```
./train_net.py \
	--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
	--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
```
For more options, see `./train_net.py -h`.

### Use Detectron2 APIs in Your Code

See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
to learn how to use detectron2 APIs to:
1. run inference with an existing model
2. train a builtin model on a custom dataset

See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
for more ways to build your project on detectron2.