File size: 5,942 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# PointRend: Image Segmentation as Rendering
Alexander Kirillov, Yuxin Wu, Kaiming He, Ross Girshick
[[`arXiv`](https://arxiv.org/abs/1912.08193)] [[`BibTeX`](#CitingPointRend)]
<div align="center">
<img src="https://alexander-kirillov.github.io/images/kirillov2019pointrend.jpg"/>
</div><br/>
In this repository, we release code for PointRend in Detectron2. PointRend can be flexibly applied to both instance and semantic segmentation tasks by building on top of existing state-of-the-art models.
## Installation
Install Detectron 2 following [INSTALL.md](https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md). You are ready to go!
## Quick start and visualization
This [Colab Notebook](https://colab.research.google.com/drive/1isGPL5h5_cKoPPhVL9XhMokRtHDvmMVL) tutorial contains examples of PointRend usage and visualizations of its point sampling stages.
## Training
To train a model with 8 GPUs run:
```bash
cd /path/to/detectron2/projects/PointRend
python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --num-gpus 8
```
## Evaluation
Model evaluation can be done similarly:
```bash
cd /path/to/detectron2/projects/PointRend
python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
```
# Pretrained Models
## Instance Segmentation
#### COCO
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Mask<br/>head</th>
<th valign="bottom">Backbone</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">Output<br/>resolution</th>
<th valign="bottom">mask<br/>AP</th>
<th valign="bottom">mask<br/>AP*</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml">PointRend</a></td>
<td align="center">R50-FPN</td>
<td align="center">1×</td>
<td align="center">224×224</td>
<td align="center">36.2</td>
<td align="center">39.7</td>
<td align="center">164254221</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco/164254221/model_final_88c6f8.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco/164254221/metrics.json">metrics</a></td>
</tr>
<tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml">PointRend</a></td>
<td align="center">R50-FPN</td>
<td align="center">3×</td>
<td align="center">224×224</td>
<td align="center">38.3</td>
<td align="center">41.6</td>
<td align="center">164955410</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/model_final_3c3198.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/metrics.json">metrics</a></td>
</tr>
</tbody></table>
AP* is COCO mask AP evaluated against the higher-quality LVIS annotations; see the paper for details. Run `python detectron2/datasets/prepare_cocofied_lvis.py` to prepare GT files for AP* evaluation. Since LVIS annotations are not exhaustive `lvis-api` and not `cocoapi` should be used to evaluate AP*.
#### Cityscapes
Cityscapes model is trained with ImageNet pretraining.
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Mask<br/>head</th>
<th valign="bottom">Backbone</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">Output<br/>resolution</th>
<th valign="bottom">mask<br/>AP</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes.yaml">PointRend</a></td>
<td align="center">R50-FPN</td>
<td align="center">1×</td>
<td align="center">224×224</td>
<td align="center">35.9</td>
<td align="center">164255101</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes/164255101/model_final_318a02.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes/164255101/metrics.json">metrics</a></td>
</tr>
</tbody></table>
## Semantic Segmentation
#### Cityscapes
Cityscapes model is trained with ImageNet pretraining.
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Method</th>
<th valign="bottom">Backbone</th>
<th valign="bottom">Output<br/>resolution</th>
<th valign="bottom">mIoU</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<tr><td align="left"><a href="configs/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes.yaml">SemanticFPN + PointRend</a></td>
<td align="center">R101-FPN</td>
<td align="center">1024×2048</td>
<td align="center">78.6</td>
<td align="center">186480235</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes/186480235/model_final_5f3665.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes/186480235/metrics.json">metrics</a></td>
</tr>
</tbody></table>
## <a name="CitingPointRend"></a>Citing PointRend
If you use PointRend, please use the following BibTeX entry.
```BibTeX
@InProceedings{kirillov2019pointrend,
title={{PointRend}: Image Segmentation as Rendering},
author={Alexander Kirillov and Yuxin Wu and Kaiming He and Ross Girshick},
journal={ArXiv:1912.08193},
year={2019}
}
```
|