Spaces:
bpheng
/
Runtime error

vton / detectron2 /modeling /roi_heads /keypoint_head.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
11.2 kB
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import List
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import Conv2d, ConvTranspose2d, cat, interpolate
from detectron2.structures import Instances, heatmaps_to_keypoints
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry
_TOTAL_SKIPPED = 0
__all__ = [
"ROI_KEYPOINT_HEAD_REGISTRY",
"build_keypoint_head",
"BaseKeypointRCNNHead",
"KRCNNConvDeconvUpsampleHead",
]
ROI_KEYPOINT_HEAD_REGISTRY = Registry("ROI_KEYPOINT_HEAD")
ROI_KEYPOINT_HEAD_REGISTRY.__doc__ = """
Registry for keypoint heads, which make keypoint predictions from per-region features.
The registered object will be called with `obj(cfg, input_shape)`.
"""
def build_keypoint_head(cfg, input_shape):
"""
Build a keypoint head from `cfg.MODEL.ROI_KEYPOINT_HEAD.NAME`.
"""
name = cfg.MODEL.ROI_KEYPOINT_HEAD.NAME
return ROI_KEYPOINT_HEAD_REGISTRY.get(name)(cfg, input_shape)
def keypoint_rcnn_loss(pred_keypoint_logits, instances, normalizer):
"""
Arguments:
pred_keypoint_logits (Tensor): A tensor of shape (N, K, S, S) where N is the total number
of instances in the batch, K is the number of keypoints, and S is the side length
of the keypoint heatmap. The values are spatial logits.
instances (list[Instances]): A list of M Instances, where M is the batch size.
These instances are predictions from the model
that are in 1:1 correspondence with pred_keypoint_logits.
Each Instances should contain a `gt_keypoints` field containing a `structures.Keypoint`
instance.
normalizer (float): Normalize the loss by this amount.
If not specified, we normalize by the number of visible keypoints in the minibatch.
Returns a scalar tensor containing the loss.
"""
heatmaps = []
valid = []
keypoint_side_len = pred_keypoint_logits.shape[2]
for instances_per_image in instances:
if len(instances_per_image) == 0:
continue
keypoints = instances_per_image.gt_keypoints
heatmaps_per_image, valid_per_image = keypoints.to_heatmap(
instances_per_image.proposal_boxes.tensor, keypoint_side_len
)
heatmaps.append(heatmaps_per_image.view(-1))
valid.append(valid_per_image.view(-1))
if len(heatmaps):
keypoint_targets = cat(heatmaps, dim=0)
valid = cat(valid, dim=0).to(dtype=torch.uint8)
valid = torch.nonzero(valid).squeeze(1)
# torch.mean (in binary_cross_entropy_with_logits) doesn't
# accept empty tensors, so handle it separately
if len(heatmaps) == 0 or valid.numel() == 0:
global _TOTAL_SKIPPED
_TOTAL_SKIPPED += 1
storage = get_event_storage()
storage.put_scalar("kpts_num_skipped_batches", _TOTAL_SKIPPED, smoothing_hint=False)
return pred_keypoint_logits.sum() * 0
N, K, H, W = pred_keypoint_logits.shape
pred_keypoint_logits = pred_keypoint_logits.view(N * K, H * W)
keypoint_loss = F.cross_entropy(
pred_keypoint_logits[valid], keypoint_targets[valid], reduction="sum"
)
# If a normalizer isn't specified, normalize by the number of visible keypoints in the minibatch
if normalizer is None:
normalizer = valid.numel()
keypoint_loss /= normalizer
return keypoint_loss
def keypoint_rcnn_inference(pred_keypoint_logits: torch.Tensor, pred_instances: List[Instances]):
"""
Post process each predicted keypoint heatmap in `pred_keypoint_logits` into (x, y, score)
and add it to the `pred_instances` as a `pred_keypoints` field.
Args:
pred_keypoint_logits (Tensor): A tensor of shape (R, K, S, S) where R is the total number
of instances in the batch, K is the number of keypoints, and S is the side length of
the keypoint heatmap. The values are spatial logits.
pred_instances (list[Instances]): A list of N Instances, where N is the number of images.
Returns:
None. Each element in pred_instances will contain extra "pred_keypoints" and
"pred_keypoint_heatmaps" fields. "pred_keypoints" is a tensor of shape
(#instance, K, 3) where the last dimension corresponds to (x, y, score).
The scores are larger than 0. "pred_keypoint_heatmaps" contains the raw
keypoint logits as passed to this function.
"""
# flatten all bboxes from all images together (list[Boxes] -> Rx4 tensor)
bboxes_flat = cat([b.pred_boxes.tensor for b in pred_instances], dim=0)
pred_keypoint_logits = pred_keypoint_logits.detach()
keypoint_results = heatmaps_to_keypoints(pred_keypoint_logits, bboxes_flat.detach())
num_instances_per_image = [len(i) for i in pred_instances]
keypoint_results = keypoint_results[:, :, [0, 1, 3]].split(num_instances_per_image, dim=0)
heatmap_results = pred_keypoint_logits.split(num_instances_per_image, dim=0)
for keypoint_results_per_image, heatmap_results_per_image, instances_per_image in zip(
keypoint_results, heatmap_results, pred_instances
):
# keypoint_results_per_image is (num instances)x(num keypoints)x(x, y, score)
# heatmap_results_per_image is (num instances)x(num keypoints)x(side)x(side)
instances_per_image.pred_keypoints = keypoint_results_per_image
instances_per_image.pred_keypoint_heatmaps = heatmap_results_per_image
class BaseKeypointRCNNHead(nn.Module):
"""
Implement the basic Keypoint R-CNN losses and inference logic described in
Sec. 5 of :paper:`Mask R-CNN`.
"""
@configurable
def __init__(self, *, num_keypoints, loss_weight=1.0, loss_normalizer=1.0):
"""
NOTE: this interface is experimental.
Args:
num_keypoints (int): number of keypoints to predict
loss_weight (float): weight to multiple on the keypoint loss
loss_normalizer (float or str):
If float, divide the loss by `loss_normalizer * #images`.
If 'visible', the loss is normalized by the total number of
visible keypoints across images.
"""
super().__init__()
self.num_keypoints = num_keypoints
self.loss_weight = loss_weight
assert loss_normalizer == "visible" or isinstance(loss_normalizer, float), loss_normalizer
self.loss_normalizer = loss_normalizer
@classmethod
def from_config(cls, cfg, input_shape):
ret = {
"loss_weight": cfg.MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT,
"num_keypoints": cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS,
}
normalize_by_visible = (
cfg.MODEL.ROI_KEYPOINT_HEAD.NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS
) # noqa
if not normalize_by_visible:
batch_size_per_image = cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE
positive_sample_fraction = cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION
ret["loss_normalizer"] = (
ret["num_keypoints"] * batch_size_per_image * positive_sample_fraction
)
else:
ret["loss_normalizer"] = "visible"
return ret
def forward(self, x, instances: List[Instances]):
"""
Args:
x: input 4D region feature(s) provided by :class:`ROIHeads`.
instances (list[Instances]): contains the boxes & labels corresponding
to the input features.
Exact format is up to its caller to decide.
Typically, this is the foreground instances in training, with
"proposal_boxes" field and other gt annotations.
In inference, it contains boxes that are already predicted.
Returns:
A dict of losses if in training. The predicted "instances" if in inference.
"""
x = self.layers(x)
if self.training:
num_images = len(instances)
normalizer = (
None if self.loss_normalizer == "visible" else num_images * self.loss_normalizer
)
return {
"loss_keypoint": keypoint_rcnn_loss(x, instances, normalizer=normalizer)
* self.loss_weight
}
else:
keypoint_rcnn_inference(x, instances)
return instances
def layers(self, x):
"""
Neural network layers that makes predictions from regional input features.
"""
raise NotImplementedError
# To get torchscript support, we make the head a subclass of `nn.Sequential`.
# Therefore, to add new layers in this head class, please make sure they are
# added in the order they will be used in forward().
@ROI_KEYPOINT_HEAD_REGISTRY.register()
class KRCNNConvDeconvUpsampleHead(BaseKeypointRCNNHead, nn.Sequential):
"""
A standard keypoint head containing a series of 3x3 convs, followed by
a transpose convolution and bilinear interpolation for upsampling.
It is described in Sec. 5 of :paper:`Mask R-CNN`.
"""
@configurable
def __init__(self, input_shape, *, num_keypoints, conv_dims, **kwargs):
"""
NOTE: this interface is experimental.
Args:
input_shape (ShapeSpec): shape of the input feature
conv_dims: an iterable of output channel counts for each conv in the head
e.g. (512, 512, 512) for three convs outputting 512 channels.
"""
super().__init__(num_keypoints=num_keypoints, **kwargs)
# default up_scale to 2.0 (this can be made an option)
up_scale = 2.0
in_channels = input_shape.channels
for idx, layer_channels in enumerate(conv_dims, 1):
module = Conv2d(in_channels, layer_channels, 3, stride=1, padding=1)
self.add_module("conv_fcn{}".format(idx), module)
self.add_module("conv_fcn_relu{}".format(idx), nn.ReLU())
in_channels = layer_channels
deconv_kernel = 4
self.score_lowres = ConvTranspose2d(
in_channels, num_keypoints, deconv_kernel, stride=2, padding=deconv_kernel // 2 - 1
)
self.up_scale = up_scale
for name, param in self.named_parameters():
if "bias" in name:
nn.init.constant_(param, 0)
elif "weight" in name:
# Caffe2 implementation uses MSRAFill, which in fact
# corresponds to kaiming_normal_ in PyTorch
nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu")
@classmethod
def from_config(cls, cfg, input_shape):
ret = super().from_config(cfg, input_shape)
ret["input_shape"] = input_shape
ret["conv_dims"] = cfg.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS
return ret
def layers(self, x):
for layer in self:
x = layer(x)
x = interpolate(x, scale_factor=self.up_scale, mode="bilinear", align_corners=False)
return x