Spaces:
bpheng
/
Runtime error

vton / detectron2 /utils /analysis.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
6.02 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# -*- coding: utf-8 -*-
import typing
from typing import Any, List
import fvcore
from fvcore.nn import activation_count, flop_count, parameter_count, parameter_count_table
from torch import nn
from detectron2.export import TracingAdapter
__all__ = [
"activation_count_operators",
"flop_count_operators",
"parameter_count_table",
"parameter_count",
"FlopCountAnalysis",
]
FLOPS_MODE = "flops"
ACTIVATIONS_MODE = "activations"
# Some extra ops to ignore from counting, including elementwise and reduction ops
_IGNORED_OPS = {
"aten::add",
"aten::add_",
"aten::argmax",
"aten::argsort",
"aten::batch_norm",
"aten::constant_pad_nd",
"aten::div",
"aten::div_",
"aten::exp",
"aten::log2",
"aten::max_pool2d",
"aten::meshgrid",
"aten::mul",
"aten::mul_",
"aten::neg",
"aten::nonzero_numpy",
"aten::reciprocal",
"aten::repeat_interleave",
"aten::rsub",
"aten::sigmoid",
"aten::sigmoid_",
"aten::softmax",
"aten::sort",
"aten::sqrt",
"aten::sub",
"torchvision::nms", # TODO estimate flop for nms
}
class FlopCountAnalysis(fvcore.nn.FlopCountAnalysis):
"""
Same as :class:`fvcore.nn.FlopCountAnalysis`, but supports detectron2 models.
"""
def __init__(self, model, inputs):
"""
Args:
model (nn.Module):
inputs (Any): inputs of the given model. Does not have to be tuple of tensors.
"""
wrapper = TracingAdapter(model, inputs, allow_non_tensor=True)
super().__init__(wrapper, wrapper.flattened_inputs)
self.set_op_handle(**{k: None for k in _IGNORED_OPS})
def flop_count_operators(model: nn.Module, inputs: list) -> typing.DefaultDict[str, float]:
"""
Implement operator-level flops counting using jit.
This is a wrapper of :func:`fvcore.nn.flop_count` and adds supports for standard
detection models in detectron2.
Please use :class:`FlopCountAnalysis` for more advanced functionalities.
Note:
The function runs the input through the model to compute flops.
The flops of a detection model is often input-dependent, for example,
the flops of box & mask head depends on the number of proposals &
the number of detected objects.
Therefore, the flops counting using a single input may not accurately
reflect the computation cost of a model. It's recommended to average
across a number of inputs.
Args:
model: a detectron2 model that takes `list[dict]` as input.
inputs (list[dict]): inputs to model, in detectron2's standard format.
Only "image" key will be used.
supported_ops (dict[str, Handle]): see documentation of :func:`fvcore.nn.flop_count`
Returns:
Counter: Gflop count per operator
"""
old_train = model.training
model.eval()
ret = FlopCountAnalysis(model, inputs).by_operator()
model.train(old_train)
return {k: v / 1e9 for k, v in ret.items()}
def activation_count_operators(
model: nn.Module, inputs: list, **kwargs
) -> typing.DefaultDict[str, float]:
"""
Implement operator-level activations counting using jit.
This is a wrapper of fvcore.nn.activation_count, that supports standard detection models
in detectron2.
Note:
The function runs the input through the model to compute activations.
The activations of a detection model is often input-dependent, for example,
the activations of box & mask head depends on the number of proposals &
the number of detected objects.
Args:
model: a detectron2 model that takes `list[dict]` as input.
inputs (list[dict]): inputs to model, in detectron2's standard format.
Only "image" key will be used.
Returns:
Counter: activation count per operator
"""
return _wrapper_count_operators(model=model, inputs=inputs, mode=ACTIVATIONS_MODE, **kwargs)
def _wrapper_count_operators(
model: nn.Module, inputs: list, mode: str, **kwargs
) -> typing.DefaultDict[str, float]:
# ignore some ops
supported_ops = {k: lambda *args, **kwargs: {} for k in _IGNORED_OPS}
supported_ops.update(kwargs.pop("supported_ops", {}))
kwargs["supported_ops"] = supported_ops
assert len(inputs) == 1, "Please use batch size=1"
tensor_input = inputs[0]["image"]
inputs = [{"image": tensor_input}] # remove other keys, in case there are any
old_train = model.training
if isinstance(model, (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel)):
model = model.module
wrapper = TracingAdapter(model, inputs)
wrapper.eval()
if mode == FLOPS_MODE:
ret = flop_count(wrapper, (tensor_input,), **kwargs)
elif mode == ACTIVATIONS_MODE:
ret = activation_count(wrapper, (tensor_input,), **kwargs)
else:
raise NotImplementedError("Count for mode {} is not supported yet.".format(mode))
# compatible with change in fvcore
if isinstance(ret, tuple):
ret = ret[0]
model.train(old_train)
return ret
def find_unused_parameters(model: nn.Module, inputs: Any) -> List[str]:
"""
Given a model, find parameters that do not contribute
to the loss.
Args:
model: a model in training mode that returns losses
inputs: argument or a tuple of arguments. Inputs of the model
Returns:
list[str]: the name of unused parameters
"""
assert model.training
for _, prm in model.named_parameters():
prm.grad = None
if isinstance(inputs, tuple):
losses = model(*inputs)
else:
losses = model(inputs)
if isinstance(losses, dict):
losses = sum(losses.values())
losses.backward()
unused: List[str] = []
for name, prm in model.named_parameters():
if prm.grad is None:
unused.append(name)
prm.grad = None
return unused