|
|
|
|
|
|
|
import argparse |
|
import logging |
|
import os |
|
import sys |
|
from timeit import default_timer as timer |
|
from typing import Any, ClassVar, Dict, List |
|
import torch |
|
from fvcore.common.file_io import PathManager |
|
|
|
from detectron2.data.catalog import DatasetCatalog |
|
from detectron2.utils.logger import setup_logger |
|
|
|
from densepose.data.structures import DensePoseDataRelative |
|
from densepose.utils.dbhelper import EntrySelector |
|
from densepose.utils.logger import verbosity_to_level |
|
from densepose.vis.base import CompoundVisualizer |
|
from densepose.vis.bounding_box import BoundingBoxVisualizer |
|
from densepose.vis.densepose import ( |
|
DensePoseDataCoarseSegmentationVisualizer, |
|
DensePoseDataPointsIVisualizer, |
|
DensePoseDataPointsUVisualizer, |
|
DensePoseDataPointsVisualizer, |
|
DensePoseDataPointsVVisualizer, |
|
) |
|
|
|
DOC = """Query DB - a tool to print / visualize data from a database |
|
""" |
|
|
|
LOGGER_NAME = "query_db" |
|
|
|
logger = logging.getLogger(LOGGER_NAME) |
|
|
|
_ACTION_REGISTRY: Dict[str, "Action"] = {} |
|
|
|
|
|
class Action(object): |
|
@classmethod |
|
def add_arguments(cls: type, parser: argparse.ArgumentParser): |
|
parser.add_argument( |
|
"-v", |
|
"--verbosity", |
|
action="count", |
|
help="Verbose mode. Multiple -v options increase the verbosity.", |
|
) |
|
|
|
|
|
def register_action(cls: type): |
|
""" |
|
Decorator for action classes to automate action registration |
|
""" |
|
global _ACTION_REGISTRY |
|
_ACTION_REGISTRY[cls.COMMAND] = cls |
|
return cls |
|
|
|
|
|
class EntrywiseAction(Action): |
|
@classmethod |
|
def add_arguments(cls: type, parser: argparse.ArgumentParser): |
|
super(EntrywiseAction, cls).add_arguments(parser) |
|
parser.add_argument( |
|
"dataset", metavar="<dataset>", help="Dataset name (e.g. densepose_coco_2014_train)" |
|
) |
|
parser.add_argument( |
|
"selector", |
|
metavar="<selector>", |
|
help="Dataset entry selector in the form field1[:type]=value1[," |
|
"field2[:type]=value_min-value_max...] which selects all " |
|
"entries from the dataset that satisfy the constraints", |
|
) |
|
parser.add_argument( |
|
"--max-entries", metavar="N", help="Maximum number of entries to process", type=int |
|
) |
|
|
|
@classmethod |
|
def execute(cls: type, args: argparse.Namespace): |
|
dataset = setup_dataset(args.dataset) |
|
entry_selector = EntrySelector.from_string(args.selector) |
|
context = cls.create_context(args) |
|
if args.max_entries is not None: |
|
for _, entry in zip(range(args.max_entries), dataset): |
|
if entry_selector(entry): |
|
cls.execute_on_entry(entry, context) |
|
else: |
|
for entry in dataset: |
|
if entry_selector(entry): |
|
cls.execute_on_entry(entry, context) |
|
|
|
@classmethod |
|
def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]: |
|
context = {} |
|
return context |
|
|
|
|
|
@register_action |
|
class PrintAction(EntrywiseAction): |
|
""" |
|
Print action that outputs selected entries to stdout |
|
""" |
|
|
|
COMMAND: ClassVar[str] = "print" |
|
|
|
@classmethod |
|
def add_parser(cls: type, subparsers: argparse._SubParsersAction): |
|
parser = subparsers.add_parser(cls.COMMAND, help="Output selected entries to stdout. ") |
|
cls.add_arguments(parser) |
|
parser.set_defaults(func=cls.execute) |
|
|
|
@classmethod |
|
def add_arguments(cls: type, parser: argparse.ArgumentParser): |
|
super(PrintAction, cls).add_arguments(parser) |
|
|
|
@classmethod |
|
def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]): |
|
import pprint |
|
|
|
printer = pprint.PrettyPrinter(indent=2, width=200, compact=True) |
|
printer.pprint(entry) |
|
|
|
|
|
@register_action |
|
class ShowAction(EntrywiseAction): |
|
""" |
|
Show action that visualizes selected entries on an image |
|
""" |
|
|
|
COMMAND: ClassVar[str] = "show" |
|
VISUALIZERS: ClassVar[Dict[str, object]] = { |
|
"dp_segm": DensePoseDataCoarseSegmentationVisualizer(), |
|
"dp_i": DensePoseDataPointsIVisualizer(), |
|
"dp_u": DensePoseDataPointsUVisualizer(), |
|
"dp_v": DensePoseDataPointsVVisualizer(), |
|
"dp_pts": DensePoseDataPointsVisualizer(), |
|
"bbox": BoundingBoxVisualizer(), |
|
} |
|
|
|
@classmethod |
|
def add_parser(cls: type, subparsers: argparse._SubParsersAction): |
|
parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries") |
|
cls.add_arguments(parser) |
|
parser.set_defaults(func=cls.execute) |
|
|
|
@classmethod |
|
def add_arguments(cls: type, parser: argparse.ArgumentParser): |
|
super(ShowAction, cls).add_arguments(parser) |
|
parser.add_argument( |
|
"visualizations", |
|
metavar="<visualizations>", |
|
help="Comma separated list of visualizations, possible values: " |
|
"[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))), |
|
) |
|
parser.add_argument( |
|
"--output", |
|
metavar="<image_file>", |
|
default="output.png", |
|
help="File name to save output to", |
|
) |
|
|
|
@classmethod |
|
def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]): |
|
import cv2 |
|
import numpy as np |
|
|
|
image_fpath = PathManager.get_local_path(entry["file_name"]) |
|
image = cv2.imread(image_fpath, cv2.IMREAD_GRAYSCALE) |
|
image = np.tile(image[:, :, np.newaxis], [1, 1, 3]) |
|
datas = cls._extract_data_for_visualizers_from_entry(context["vis_specs"], entry) |
|
visualizer = context["visualizer"] |
|
image_vis = visualizer.visualize(image, datas) |
|
entry_idx = context["entry_idx"] + 1 |
|
out_fname = cls._get_out_fname(entry_idx, context["out_fname"]) |
|
cv2.imwrite(out_fname, image_vis) |
|
logger.info(f"Output saved to {out_fname}") |
|
context["entry_idx"] += 1 |
|
|
|
@classmethod |
|
def _get_out_fname(cls: type, entry_idx: int, fname_base: str): |
|
base, ext = os.path.splitext(fname_base) |
|
return base + ".{0:04d}".format(entry_idx) + ext |
|
|
|
@classmethod |
|
def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]: |
|
vis_specs = args.visualizations.split(",") |
|
visualizers = [] |
|
for vis_spec in vis_specs: |
|
vis = cls.VISUALIZERS[vis_spec] |
|
visualizers.append(vis) |
|
context = { |
|
"vis_specs": vis_specs, |
|
"visualizer": CompoundVisualizer(visualizers), |
|
"out_fname": args.output, |
|
"entry_idx": 0, |
|
} |
|
return context |
|
|
|
@classmethod |
|
def _extract_data_for_visualizers_from_entry( |
|
cls: type, vis_specs: List[str], entry: Dict[str, Any] |
|
): |
|
dp_list = [] |
|
bbox_list = [] |
|
for annotation in entry["annotations"]: |
|
is_valid, _ = DensePoseDataRelative.validate_annotation(annotation) |
|
if not is_valid: |
|
continue |
|
bbox = torch.as_tensor(annotation["bbox"]) |
|
bbox_list.append(bbox) |
|
dp_data = DensePoseDataRelative(annotation) |
|
dp_list.append(dp_data) |
|
datas = [] |
|
for vis_spec in vis_specs: |
|
datas.append(bbox_list if "bbox" == vis_spec else (bbox_list, dp_list)) |
|
return datas |
|
|
|
|
|
def setup_dataset(dataset_name): |
|
logger.info("Loading dataset {}".format(dataset_name)) |
|
start = timer() |
|
dataset = DatasetCatalog.get(dataset_name) |
|
stop = timer() |
|
logger.info("Loaded dataset {} in {:.3f}s".format(dataset_name, stop - start)) |
|
return dataset |
|
|
|
|
|
def create_argument_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser( |
|
description=DOC, |
|
formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120), |
|
) |
|
parser.set_defaults(func=lambda _: parser.print_help(sys.stdout)) |
|
subparsers = parser.add_subparsers(title="Actions") |
|
for _, action in _ACTION_REGISTRY.items(): |
|
action.add_parser(subparsers) |
|
return parser |
|
|
|
|
|
def main(): |
|
parser = create_argument_parser() |
|
args = parser.parse_args() |
|
verbosity = args.verbosity if hasattr(args, "verbosity") else None |
|
global logger |
|
logger = setup_logger(name=LOGGER_NAME) |
|
logger.setLevel(verbosity_to_level(verbosity)) |
|
args.func(args) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|