|
|
|
|
|
|
|
""" |
|
PointRend Training Script. |
|
|
|
This script is a simplified version of the training script in detectron2/tools. |
|
""" |
|
|
|
import os |
|
import torch |
|
|
|
import detectron2.utils.comm as comm |
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.config import get_cfg |
|
from detectron2.data import MetadataCatalog, build_detection_train_loader |
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch |
|
from detectron2.evaluation import ( |
|
CityscapesInstanceEvaluator, |
|
CityscapesSemSegEvaluator, |
|
COCOEvaluator, |
|
DatasetEvaluators, |
|
LVISEvaluator, |
|
SemSegEvaluator, |
|
verify_results, |
|
) |
|
|
|
from point_rend import SemSegDatasetMapper, add_pointrend_config |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '4' |
|
|
|
from detectron2.data.datasets import register_coco_instances |
|
register_coco_instances("CIHP_train", {}, "/data03/v_xuyunqiu/multi_parsing/data/msrcnn_finetune_annotations/CIHP_train.json", "/data03/v_xuyunqiu/data/instance-level_human_parsing/Training/Images") |
|
register_coco_instances("CIHP_val", {}, "/data03/v_xuyunqiu/multi_parsing/data/msrcnn_finetune_annotations/CIHP_val.json", "/data03/v_xuyunqiu/data/instance-level_human_parsing/Validation/Images") |
|
|
|
|
|
class Trainer(DefaultTrainer): |
|
""" |
|
We use the "DefaultTrainer" which contains a number pre-defined logic for |
|
standard training workflow. They may not work for you, especially if you |
|
are working on a new research project. In that case you can use the cleaner |
|
"SimpleTrainer", or write your own training loop. |
|
""" |
|
|
|
@classmethod |
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None): |
|
""" |
|
Create evaluator(s) for a given dataset. |
|
This uses the special metadata "evaluator_type" associated with each builtin dataset. |
|
For your own dataset, you can simply create an evaluator manually in your |
|
script and do not have to worry about the hacky if-else logic here. |
|
""" |
|
if output_folder is None: |
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") |
|
evaluator_list = [] |
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type |
|
if evaluator_type == "lvis": |
|
return LVISEvaluator(dataset_name, cfg, True, output_folder) |
|
if evaluator_type == "coco": |
|
return COCOEvaluator(dataset_name, cfg, True, output_folder) |
|
if evaluator_type == "sem_seg": |
|
return SemSegEvaluator( |
|
dataset_name, |
|
distributed=True, |
|
num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, |
|
ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, |
|
output_dir=output_folder, |
|
) |
|
if evaluator_type == "cityscapes_instance": |
|
assert ( |
|
torch.cuda.device_count() >= comm.get_rank() |
|
), "CityscapesEvaluator currently do not work with multiple machines." |
|
return CityscapesInstanceEvaluator(dataset_name) |
|
if evaluator_type == "cityscapes_sem_seg": |
|
assert ( |
|
torch.cuda.device_count() >= comm.get_rank() |
|
), "CityscapesEvaluator currently do not work with multiple machines." |
|
return CityscapesSemSegEvaluator(dataset_name) |
|
if len(evaluator_list) == 0: |
|
raise NotImplementedError( |
|
"no Evaluator for the dataset {} with the type {}".format( |
|
dataset_name, evaluator_type |
|
) |
|
) |
|
if len(evaluator_list) == 1: |
|
return evaluator_list[0] |
|
return DatasetEvaluators(evaluator_list) |
|
|
|
@classmethod |
|
def build_train_loader(cls, cfg): |
|
if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE: |
|
mapper = SemSegDatasetMapper(cfg, True) |
|
else: |
|
mapper = None |
|
return build_detection_train_loader(cfg, mapper=mapper) |
|
|
|
|
|
def setup(args): |
|
""" |
|
Create configs and perform basic setups. |
|
""" |
|
cfg = get_cfg() |
|
add_pointrend_config(cfg) |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
cfg.freeze() |
|
default_setup(cfg, args) |
|
return cfg |
|
|
|
|
|
def main(args): |
|
cfg = setup(args) |
|
|
|
if args.eval_only: |
|
model = Trainer.build_model(cfg) |
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( |
|
cfg.MODEL.WEIGHTS, resume=args.resume |
|
) |
|
res = Trainer.test(cfg, model) |
|
if comm.is_main_process(): |
|
verify_results(cfg, res) |
|
return res |
|
|
|
trainer = Trainer(cfg) |
|
trainer.resume_or_load(resume=args.resume) |
|
return trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = default_argument_parser().parse_args() |
|
print("Command Line Args:", args) |
|
launch( |
|
main, |
|
args.num_gpus, |
|
num_machines=args.num_machines, |
|
machine_rank=args.machine_rank, |
|
dist_url=args.dist_url, |
|
args=(args,), |
|
) |
|
|