File size: 15,457 Bytes
fb7f2e1 e54af7b 06c335d e54af7b df4c3d4 9da3be7 e54af7b df4c3d4 72ccdcf 3beb244 2d44025 fb7f2e1 2d44025 34f79f7 2d44025 7c77316 df4c3d4 2d44025 fb7f2e1 df4c3d4 2d44025 9da3be7 2d44025 04faab6 2d44025 fb7f2e1 2d44025 fb7f2e1 2d44025 fb7f2e1 2d44025 fb7f2e1 2d44025 fb7f2e1 2d44025 0a222a5 fb7f2e1 2d44025 fb7f2e1 2d44025 fb7f2e1 2d44025 fb7f2e1 2d44025 b9cabd2 fb7f2e1 39194c2 2d44025 39194c2 2d44025 0a222a5 e4e0ca7 39194c2 e4e0ca7 542ca55 e4e0ca7 2d44025 ff114d8 df4c3d4 2d44025 fb7f2e1 2d44025 fb7f2e1 2d44025 df4c3d4 1267ef7 df4c3d4 2d44025 117ade9 fb7f2e1 117ade9 2d44025 117ade9 2d44025 dd3d2d9 2d44025 5fd0925 2d44025 0a222a5 2d44025 e4e0ca7 2d44025 fb7f2e1 2d44025 fb7f2e1 117ade9 fb7f2e1 0a222a5 df4c3d4 0a222a5 2d44025 e54af7b 2d44025 df4c3d4 e54af7b df4c3d4 e54af7b df4c3d4 fb7f2e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import functions as funky # need to enable this for Hugging Face
import pandas as pd
import gradio as gr
import os
from datasets import load_dataset
from huggingface_hub import login
import numpy as np
from fastapi import FastAPI, Request
import uvicorn
from starlette.middleware.sessions import SessionMiddleware
import fastapi
from datetime import datetime
import re
login(token = os.environ['HUB_TOKEN'])
logger = gr.HuggingFaceDatasetSaver(os.environ['HUB_TOKEN'], dataset_name='illustration_gdrive_logging_main', organization=None, private=True)
logger.setup([gr.Text(label="clicked_url"), gr.Text(label="seach_term"), gr.Text(label = 'sessionhash'), gr.Text(label = 'datetime')], './flagged_data_points')
logging_js = '''
function magicFunc(x){
let script = document.createElement('script');
script.src = "file/js_functions.js"
document.head.appendChild(script);
}
'''
dataset = load_dataset("bradley6597/illustration-test", data_files = 'data.csv')
df = pd.DataFrame(dataset['train']).drop_duplicates()
dataset_ai = load_dataset("bradley6597/illustration-test", data_files = 'ai_captions_data.csv')
ai_captions = pd.DataFrame(dataset_ai['train']).drop_duplicates()
df = df.merge(ai_captions, how = 'left', on = 'clean_link')
df['ai_description'] = df['ai_description'].fillna('')
ill_links = df.copy()
ill_links = ill_links[ill_links['Description'] != 'Moved'].copy()
ill_links['code'] = ill_links['link'].str.replace("https://drive.google.com/file/d/", "", regex = False)
ill_links['code'] = ill_links['code'].str.replace("/view?usp=drivesdk", "", regex = False)
ill_links['filename'] = ill_links['file'].str.replace(".*\\/", "", regex = True)
# ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=k'
ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=w320-h304'
ill_links['image_code'] = np.where(ill_links['file'].str.contains("\\.png$", regex = True),
'<center><a href="' + ill_links['link'] + '" target="_blank" onclick="magicFunc(\'' + ill_links['code'] + '\')"><img src="' + ill_links['image_code'] + '" style="max-height:400px; max-width:200px"> ' + ill_links['filename'] + '</a><a href="https://drive.google.com/u/0/uc?id=' + ill_links['code'] + '&export=download"><img src="/file/download_icon.png"></a><button class="submit-btn" onclick="mdFunc(this.parentNode)">Make Draggable</button></center>',
'<center><a href="' + ill_links['link'] + '" target="_blank" onclick="magicFunc(\'' + ill_links['code'] + '\')"><img src="' + ill_links['image_code'] + '" style="max-height:400px; max-width:200px"> ' + ill_links['filename'] + '</a><a href="https://drive.google.com/u/0/uc?id=' + ill_links['code'] + '&export=download"><img src="/file/download_icon.png"></a></center>',
)
ill_links['shared_drive'] = ill_links['file'].str.replace("/content/drive/Shareddrives/", "", regex = False)
ill_links['shared_drive'] = ill_links['shared_drive'].str.replace("(.*?)\\/.*", "\\1", regex = True)
ill_links['Description'] = ill_links['Description'].str.replace("No Description", "", regex = False)
ill_links['ID'] = ill_links.index
ill_links['title'] = ill_links['filename']
ill_links['url'] = ill_links['image_code']
ill_links['filepath'] = ill_links['file']
ill_links['post_filepath'] = ill_links['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links_title = ill_links.copy()
ill_links_ai = ill_links.copy()
ill_links['abstract'] = ill_links['filename'].str.replace("\\-|\\_", " ", regex = True) + ' ' + ill_links['Description'].str.replace(",", " ", regex = False).astype(str)
ill_links_title['abstract'] = ill_links_title['filename'].str.replace('\\-|\\_', " ", regex = True)
ill_links_ai['abstract'] = ill_links_title['ai_description']
ill_check_lst = []
for i in range(0, 5):
tmp_links = f'https://lh3.google.com/u/{i}/d/' + ill_links['code'].iloc[0] + '=w320-h304'
tmp_links = '<img onmousedown="mdFunc(this)" src="' + tmp_links + '" style="max-height:400px; max-width:25%">'
tmp_links = f'<p>{i}</p>' + tmp_links
ill_check_lst.append(tmp_links)
ill_check_df = pd.DataFrame(ill_check_lst).T
ill_check_html = ill_check_df.to_html(escape = False, render_links = True, index = False, header = False)
ill_links = ill_links[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'post_filepath']]
ill_links_title = ill_links_title[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'Description', 'post_filepath']]
ill_links_ai = ill_links_ai[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'Description', 'post_filepath']]
ind_main, doc_main, tf_main = funky.index_documents(ill_links)
del ill_links
ind_title, doc_title, tf_title = funky.index_documents(ill_links_title)
del ill_links_title
ind_ai, doc_ai, tf_ai = funky.index_documents(ill_links_ai)
del ill_links_ai
def same_auth(username, password):
return(username == os.environ['username']) & (password == os.environ['password'])
def search_index(search_text, sd, ks, sort_by, max_results, user_num, search_title, image_type, increase = None):
max_results_list = ['10', '25', '50', '75', '100', '250', '500', '1000', '5000', '10000', 'All']
if increase:
max_results = max_results_list[max_results_list.index(max_results) + 1]
if search_title:
output = funky.search(tf_title, doc_title, ind_title, search_text, search_type = 'AND', ranking = True)
else:
output = funky.search(tf_main, doc_main, ind_main, search_text, search_type='AND', ranking = True)
# Don't need to order by AI as the AI ranking numbers are much lower than the default numbers
output_ai = funky.search(tf_ai, doc_ai, ind_ai, search_text, search_type = 'AND', ranking = True)
output.extend(output_ai)
output = [x for o in output for x in o if type(x) is not float]
load_more_visible = False
if len(output) > 0:
output_df = (pd.DataFrame(output)
.groupby('url')
.first()
.reset_index()
.drop_duplicates())
output_df['Date Created'] = pd.to_datetime(output_df['Date Created'], format = 'mixed')
output_df['url'] = output_df['url'].str.replace("/u/0/", f"/u/{int(user_num)}/", regex = False)
if len(sd) == 1:
output_df = output_df[(output_df['filepath'].str.contains(str(sd[0]), regex = False))]
if len(ks) > 0:
keystage_filter = '|'.join(ks).lower()
if search_title:
output_df['abstract'] = output_df['abstract'] + ' ' + output_df['Description']
output_df['abstract'] = output_df['abstract'].str.lower()
output_df['post_filepath'] = output_df['post_filepath'].str.lower()
output_df['missing_desc'] = np.where(output_df['abstract'].str.contains('eyfs|ks1|ks2', regex = True), 0, 1)
output_df2 = output_df[(output_df['abstract'].str.contains(keystage_filter, regex = True) | (output_df['missing_desc'] == 1))].copy()
output_df2 = output_df2[(output_df2['post_filepath'].str.contains(keystage_filter, regex = True))]
if output_df2.shape[0] == 0:
output_df2 = output_df[(output_df['post_filepath'].str.contains(keystage_filter, regex = True))]
else:
output_df['abstract'] = output_df['abstract'].str.lower()
output_df['post_filepath'] = output_df['post_filepath'].str.lower()
output_df['missing_desc'] = np.where(output_df['abstract'].str.contains('eyfs|ks1|ks2', regex = True), 0, 1)
output_df2 = output_df
output_df2['ind'] = output_df2.index
if sort_by == 'Relevance':
output_df2 = output_df2.sort_values(by = ['missing_desc', 'ind'], ascending = [True, True])
elif sort_by == 'Date Created':
output_df2 = output_df2.sort_values(by = ['Date Created'], ascending = False)
elif sort_by == 'A-Z':
output_df2 = output_df2.sort_values(by = ['title'], ascending = True)
image_type_filter = '$|'.join(image_type).lower().replace("jpeg", "jpg") + '$'
output_df2 = output_df2[output_df2['filepath'].str.contains(image_type_filter, regex = True)].reset_index(drop = True)
total_returned = 'No. of Results to Return (Total: ' + str(output_df2.shape[0]) + ')'
if max_results != 'All':
if output_df2.shape[0] > int(max_results):
load_more_visible = True
output_df2 = output_df2.head(int(max_results))
output_df2 = output_df2[['url']].reset_index(drop = True)
max_cols = 5
output_df2['row'] = output_df2.index % max_cols
for x in range(0, max_cols):
tmp = output_df2[output_df2['row'] == x].reset_index(drop = True)
tmp = tmp[['url']]
if x == 0:
final_df = tmp
else:
final_df = pd.concat([final_df, tmp], axis = 1)
final_df = final_df.fillna('')
else:
final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
total_returned = 'No. of Results to Return (Total: 0)'
if final_df.shape[0] == 0 :
final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
return('<center>' +
final_df.to_html(escape = False, render_links = True, index = False, header = False) +
'</center>',
gr.update(label = total_returned, value = max_results),
gr.update(visible = load_more_visible))
def search_logging(x: str, request: gr.Request):
session_id = getattr(request.cookies, 'access-token')
logger.flag(['', x, session_id, str(datetime.now())])
back_to_top_btn_html = '''
<button id="toTopBtn" onclick="'parentIFrame' in window ? window.parentIFrame.scrollTo({top: 0, behavior:'smooth'}) : window.scrollTo({ top: 0 })">
<a style="color:white; text-decoration:none;">Back to Top!</a>
</button>
'''
style = '''
footer{
display: none !important;
}
td img{
background-image:
linear-gradient(45deg, lightgrey 25%, transparent 25%),
linear-gradient(135deg, lightgrey 25%, transparent 25%),
linear-gradient(45deg, transparent 75%, lightgrey 75%),
linear-gradient(135deg, transparent 75%, lightgrey 75%);
background-size: 20px 20px;
background-position: 0 0, 10px 0, 10px -10px, 0px 10px;
}
#toTopBtn {
position: fixed;
bottom: 10px;
float: right;
right: 18.5%;
left: 77.25%;
height: 30px;
max-width: 100px;
width: 100%;
font-size: 12px;
border-color: rgba(217,24,120, .5);
background-color: rgba(35,153,249,.5);
padding: .5px;
border-radius: 4px;
}
.submit-btn{
display:inline-block !important;
padding:0.7em 1.4em !important;
margin:0 0.3em 0.3em 0 !important;
border-radius:0.15em !important;
box-sizing: border-box !important;
text-decoration:none !important;
font-family:'Roboto',sans-serif !important;
text-transform:uppercase !important;
font-weight:400 !important;
color:#FFFFFF !important;
background-color:#3369ff !important;
box-shadow:inset 0 -0.6em 0 -0.35em rgba(0,0,0,0.17) !important;
text-align:center !important;
position:relative !important;
}
.submit-btn:active{
top:0.1em !important;
}
@media all and (max-width:30em){
.submit-btn{
display:block !important;
margin:0.4em auto !important;
}
}
'''
with gr.Blocks(css=style) as app:
with gr.Row():
with gr.Column(min_width = 10):
with gr.Row():
gr.HTML("<center><p>If you can't see the images please make sure you are signed in to your Twinkl account on Google & you have access to the Shared Drives you are searching :)</p><p>To drag images click 'Make Draggable' button and wait until it says 'Drag It!'. After this you can drag the image into a folder on your computer</p></center>")
gr.HTML(ill_check_html)
user_num = gr.Number(value = 0, label = 'Put lowest number of the alarm clock you can see')
with gr.Row():
search_prompt = gr.Textbox(placeholder = 'search for an illustration', label = 'Search', elem_id = 'search_term')
title_search = gr.Checkbox(label = 'Search title only')
# with gr.Row():
shared_drive = gr.Dropdown(choices = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now', 'Shutter Stock Images', 'Beyond - Illustrations'], multiselect = True, label = 'Shared Drive', value = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'])
key_stage = gr.Dropdown(choices = ['EYFS', 'KS1', 'KS2'], multiselect = True, label = 'Key Stage', value = ['EYFS', 'KS1', 'KS2'])
image_type = gr.Dropdown(choices = ['JPEG', 'PNG', 'TIF'], multiselect = True, label = 'Image Type', value = ['PNG', 'JPEG', 'TIF'])
sort_by = gr.Dropdown(choices = ['Relevance', 'Date Created', 'A-Z'], value = 'Relevance', multiselect = False, label = 'Sort By')
max_return = gr.Dropdown(choices = ['10', '25', '50', '75', '100', '250', '500', '1000', '5000', '10000', 'All'], value = '50', multiselect = False, label = 'No. of Results to Return (Total: 0)')
with gr.Row():
search_button = gr.Button(value="Search!", interactive = True)
with gr.Row():
output_df = gr.HTML()
back_top_btn = gr.HTML(back_to_top_btn_html)
load_more_results_btn = gr.Button(value = 'Load More Results', interactive = True, visible = False)
search_button.click(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search, image_type], outputs=[output_df, max_return, load_more_results_btn])
search_prompt.submit(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search, image_type], outputs=[output_df, max_return, load_more_results_btn])
search_button.click(search_logging, inputs=[search_prompt], outputs=None)
search_prompt.submit(search_logging, inputs=[search_prompt], outputs=None)
load_more_results_btn.click(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search, image_type, load_more_results_btn], outputs=[output_df, max_return, load_more_results_btn])
app.load(_js = logging_js)
app.auth = (same_auth)
app.auth_message = ''
fapi = FastAPI()
fapi.add_middleware(SessionMiddleware, secret_key=os.environ['session_key'])
@fapi.middleware("http")
async def add_session_hash(request: Request, call_next):
response = await call_next(request)
session = request.cookies.get('session')
if session:
response.set_cookie(key='session', value=request.cookies.get('session'), httponly=True)
return response
# custom get request handler with params to flag clicks
@ fapi.get("/track")
async def track(url: str, q: str, request: Request):
if q is None:
q = ''
logger.flag([url, q, request.cookies['access-token'], str(datetime.now())])
return {"message": "ok"}
# mount Gradio app to FastAPI app
app2 = gr.mount_gradio_app(fapi, app, path="/")
# serve the app
if __name__ == "__main__":
uvicorn.run(app2, host="0.0.0.0", port=7860) |