File size: 11,862 Bytes
e54af7b
 
 
06c335d
e54af7b
 
df4c3d4
 
 
 
 
 
9da3be7
e54af7b
 
df4c3d4
a1620bf
72ccdcf
3beb244
2d44025
 
 
 
df4c3d4
2d44025
 
 
 
7c77316
df4c3d4
2d44025
df4c3d4
2d44025
 
 
9da3be7
2d44025
 
9da3be7
2d44025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da3be7
2d44025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9cabd2
 
 
 
 
 
 
2d44025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e0ca7
 
 
 
2d44025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff114d8
df4c3d4
2d44025
 
ff114d8
 
2d44025
 
 
e4e0ca7
2d44025
df4c3d4
 
1267ef7
df4c3d4
2d44025
117ade9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d44025
117ade9
2d44025
 
 
 
 
 
 
 
 
 
 
 
 
e4e0ca7
2d44025
 
 
 
117ade9
e4e0ca7
 
df4c3d4
 
 
2d44025
 
e54af7b
 
2d44025
e54af7b
df4c3d4
 
 
 
 
 
 
 
 
 
 
e54af7b
df4c3d4
 
 
 
 
 
 
 
 
e54af7b
 
df4c3d4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import functions as funky
import pandas as pd
import gradio as gr
import os
from datasets import load_dataset
from huggingface_hub import login
import numpy as np
from fastapi import FastAPI, Request
import uvicorn
from starlette.middleware.sessions import SessionMiddleware
import fastapi
from datetime import datetime
import re

login(token = os.environ['HUB_TOKEN'])


logger = gr.HuggingFaceDatasetSaver(os.environ['HUB_TOKEN'], dataset_name='illustration_gdrive_logging_main', organization=None, private=True)
logger.setup([gr.Text(label="clicked_url"), gr.Text(label="seach_term"),  gr.Text(label = 'sessionhash'), gr.Text(label = 'datetime')], './flagged_data_points')

logging_js = '''
function magicFunc(x){
    let script = document.createElement('script');    
    script.innerHTML = "async function magicFunc(x){let z = document.getElementById('search_term').getElementsByTagName('textarea')[0].value; await fetch('/track?url=' + x + '&q=' + z)}";
    document.head.appendChild(script);
}
'''

dataset = load_dataset("bradley6597/illustration-test", data_files = 'data.csv')
df = pd.DataFrame(dataset['train']).drop_duplicates()

ill_links = df.copy()
ill_links = ill_links[ill_links['Description'] != 'Moved'].copy()
ill_links['code'] = ill_links['link'].str.replace("https://drive.google.com/file/d/", "", regex = False)
ill_links['code'] = ill_links['code'].str.replace("/view?usp=drivesdk", "", regex = False)
ill_links['filename'] = ill_links['file'].str.replace(".*\\/", "", regex = True)
# ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=k'
ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=w320-h304'
ill_links['image_code'] = '<center><a href="' + ill_links['link'] + '" target="_blank" onclick="magicFunc(\'' + ill_links['code'] + '\')"><img src="' + ill_links['image_code'] + '" style="max-height:400px; max-width:200px"> ' +  ill_links['filename'] + '</a></center>'
ill_links['shared_drive'] = ill_links['file'].str.replace("/content/drive/Shareddrives/", "", regex = False)
ill_links['shared_drive'] = ill_links['shared_drive'].str.replace("(.*?)\\/.*", "\\1", regex = True)
ill_links['Description'] = ill_links['Description'].str.replace("No Description", "", regex = False)

ill_links_title = ill_links.copy()

ill_links['ID'] = ill_links.index
ill_links_title['ID'] = ill_links_title.index
ill_links['title'] = ill_links['filename']
ill_links_title['title'] = ill_links_title['filename']
ill_links['url'] = ill_links['image_code']
ill_links_title['url'] = ill_links_title['image_code']
ill_links['abstract'] = ill_links['filename'].str.replace("\\-|\\_", " ", regex = True) + ' ' + ill_links['Description'].str.replace(",", " ", regex = False).astype(str)
ill_links_title['abstract'] = ill_links_title['filename'].str.replace('\\-|\\_', " ", regex = True)
ill_links['filepath'] = ill_links['file']
ill_links_title['filepath'] = ill_links_title['file']
ill_links['post_filepath'] = ill_links['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links_title['post_filepath'] = ill_links_title['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links = ill_links[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'post_filepath']]
ill_links_title = ill_links_title[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'Description', 'post_filepath']]

ill_check_lst = []
for i in range(0, 5):
    tmp_links = ill_links['url'].iloc[0].replace("/u/0/", f"/u/{i}/")
    tmp_links = tmp_links.replace('max-width:200px', 'max-width:25%')
    tmp_links = re.sub("(.*)>.*?<\\/a>", "\\1></a>", tmp_links) 
    tmp_links = tmp_links.replace("<center>", "")
    tmp_links = tmp_links.replace("</center>", "")
    tmp_links = f'<p>{i}</p>' + tmp_links
    ill_check_lst.append(tmp_links)
ill_check_df = pd.DataFrame(ill_check_lst).T
ill_check_html = ill_check_df.to_html(escape = False, render_links = True, index = False, header = False)
    
ind_main, doc_main, tf_main = funky.index_documents(ill_links)
ind_title, doc_title, tf_title = funky.index_documents(ill_links_title)


def same_auth(username, password):
    return(username == os.environ['username']) & (password == os.environ['password'])


def search_index(search_text, sd, ks, sort_by, max_results, user_num, search_title):
    if search_title:
        output = funky.search(tf_title, doc_title, ind_title, search_text, search_type = 'AND', ranking = True)
    else:
        output = funky.search(tf_main, doc_main, ind_main, search_text, search_type='AND', ranking = True)
    output = [x for o in output for x in o if type(x) is not float]
    
    if len(output) > 0:
        
        output_df = (pd.DataFrame(output)
             .groupby('url')
             .first()
             .reset_index()
             .drop_duplicates())
        
        output_df['url'] = output_df['url'].str.replace("/u/0/", f"/u/{int(user_num)}/", regex = False)
        if len(sd) == 1:
            output_df = output_df[(output_df['filepath'].str.contains(str(sd[0]), regex = False))]
        if len(ks) > 0:
            keystage_filter = '|'.join(ks).lower()
            if search_title:
                output_df['abstract'] = output_df['abstract'] + ' ' + output_df['Description']
            
            output_df['abstract'] = output_df['abstract'].str.lower()
            output_df['post_filepath'] = output_df['post_filepath'].str.lower()
            output_df['missing_desc'] = np.where(output_df['abstract'].str.contains('eyfs|ks1|ks2', regex = True), 0, 1)
            output_df2 = output_df[(output_df['abstract'].str.contains(keystage_filter, regex = True) | (output_df['missing_desc'] == 1))].copy()
            output_df2 = output_df2[(output_df2['post_filepath'].str.contains(keystage_filter, regex = True))]
            if output_df2.shape[0] == 0:
                output_df2 = output_df[(output_df['post_filepath'].str.contains(keystage_filter, regex = True))]
        
        output_df2['ind'] = output_df2.index
        if sort_by == 'Relevance':
            output_df2 = output_df2.sort_values(by = ['missing_desc', 'ind'], ascending = [True, True])
        elif sort_by == 'Date Created':
            output_df2 = output_df2.sort_values(by = ['Date Created'], ascending = False)
        elif sort_by == 'A-Z':
            output_df2 = output_df2.sort_values(by = ['title'], ascending = True)

        total_returned = 'No. of Results to Return (Total: ' + str(output_df2.shape[0]) + ')'
        if max_results != 'All':
            output_df2 = output_df2.head(int(max_results))
        output_df2 = output_df2[['url']].reset_index(drop = True)
        
        max_cols = 5
        output_df2['row'] = output_df2.index % max_cols
        for x in range(0, max_cols):
            tmp = output_df2[output_df2['row'] == x].reset_index(drop = True)
            tmp = tmp[['url']]
            if x == 0:
                final_df = tmp
            else:
                final_df = pd.concat([final_df, tmp], axis = 1)
        
        final_df = final_df.fillna('')
    else:
        final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
        total_returned = 'No. of Results to Return (Total: 0)'

    if final_df.shape[0] == 0 :
        final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
        total_returned = 'No. of Results to Return (Total: 0)'

        
    return('<center>' + 
           final_df.to_html(escape = False, render_links = True, index = False, header = False) +
           '</center>', gr.update(label = total_returned))
    

def search_logging(x: str, request: gr.Request):
    session_id = getattr(request.cookies, 'access-token')
    logger.flag(['', x, session_id, str(datetime.now())])

back_to_top_btn_html = '''
<button id="toTopBtn" onclick="'parentIFrame' in window ? window.parentIFrame.scrollTo({top: 0, behavior:'smooth'}) : window.scrollTo({ top: 0 })">
<a style="color:white; text-decoration:none;">Back to Top!</a>
</button>
'''


style = '''
footer{
    display: none !important;
}

td img{
  background-image:
    linear-gradient(45deg, lightgrey 25%, transparent 25%), 
    linear-gradient(135deg, lightgrey 25%, transparent 25%),
    linear-gradient(45deg, transparent 75%, lightgrey 75%),
    linear-gradient(135deg, transparent 75%, lightgrey 75%);
  
  background-size: 20px 20px;
  background-position: 0 0, 10px 0, 10px -10px, 0px 10px;
}
#toTopBtn {
	position: fixed;
        bottom: 10px;
        float: right;
        right: 18.5%;
        left: 77.25%;
	height: 30px;
        max-width: 100px;
        width: 100%;
        font-size: 12px;
        border-color: rgba(217,24,120, .5);
        background-color: rgba(35,153,249,.5);
        padding: .5px;
        border-radius: 4px;
   }
'''

with gr.Blocks(css=style) as app:
    with gr.Row():
        with gr.Column(min_width = 10):
            with gr.Row():
                gr.HTML("<center><p>If you can't see the images please make sure you are signed in to your Twinkl account on Google & you have access to the Shared Drives you are searching :)</p></center>")
                gr.HTML(ill_check_html)
                user_num = gr.Number(value = 0, label = 'Put lowest number of the alarm clock you can see')
            with gr.Row():
                search_prompt = gr.Textbox(placeholder = 'search for an illustration', label = 'Search', elem_id = 'search_term')
                title_search = gr.Checkbox(label = 'Search title only')
            # with gr.Row():
                shared_drive = gr.Dropdown(choices = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'], multiselect = True, label = 'Shared Drive', value = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'])
                key_stage = gr.Dropdown(choices = ['EYFS', 'KS1', 'KS2'], multiselect = True, label = 'Key Stage', value = ['EYFS', 'KS1', 'KS2'])
                sort_by = gr.Dropdown(choices = ['Relevance', 'Date Created', 'A-Z'], value = 'Relevance', multiselect = False, label = 'Sort By')
                max_return = gr.Dropdown(choices = ['10', '25', '50', '75', '100', '250', '500', '1000', '5000', '10000', 'All'], value = '50', multiselect = False, label = 'No. of Results to Return (Total: 0)')
            with gr.Row():
                search_button = gr.Button(value="Search!")
            with gr.Row(): 
                output_df = gr.HTML() 
            back_top_btn = gr.HTML(back_to_top_btn_html)
    search_button.click(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search], outputs=[output_df, max_return]) 
    search_prompt.submit(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search], outputs=[output_df, max_return])
    search_button.click(search_logging, inputs=[search_prompt], outputs=None) 
    search_prompt.submit(search_logging, inputs=[search_prompt], outputs=None)
    
    app.load(_js = logging_js)

app.auth = (same_auth)
app.auth_message = ''


fapi = FastAPI()

fapi.add_middleware(SessionMiddleware, secret_key=os.environ['session_key'])

@fapi.middleware("http")
async def add_session_hash(request: Request, call_next):
    response = await call_next(request)
    session = request.cookies.get('session')
    if session:
        response.set_cookie(key='session', value=request.cookies.get('session'), httponly=True)
    return response

# custom get request handler with params to flag clicks
@ fapi.get("/track")
async def track(url: str, q: str, request: Request):
    
    if q is None:
        q = ''
    
    logger.flag([url, q, request.cookies['access-token'], str(datetime.now())])
    return {"message": "ok"}


# mount Gradio app to FastAPI app
app2 = gr.mount_gradio_app(fapi, app, path="/")
# serve the app
if __name__ == "__main__":
    uvicorn.run(app2, host="0.0.0.0", port=7860)