File size: 9,830 Bytes
2d44025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import functions as funky
import pandas as pd
import gradio as gr
import os
from datasets import load_dataset
from huggingface_hub import login
import numpy as np
from fastapi import FastAPI, Request
import uvicorn
from starlette.middleware.sessions import SessionMiddleware
import fastapi

login(token = os.environ['HUB_TOKEN'])


logger = gr.HuggingFaceDatasetSaver(os.environ['HUB_TOKEN'], dataset_name='illustration_gdrive_logging', organization=None, private=True)
logger.setup([gr.Text(label="clicked_url"), gr.Text(label="seach_term"),  gr.Text(label = 'sessionhash')], './flagged_data_points')

logging_js = '''
function magicFunc(x){
    let script = document.createElement('script');    
    script.innerHTML = "async function magicFunc(x){let z = document.getElementById('search_term').getElementsByTagName('textarea')[0].value; await fetch('/track?url=' + x + '&q=' + z)}";
    document.head.appendChild(script);
}
'''

dataset = load_dataset("bradley6597/illustration-test")
df = pd.DataFrame(dataset['train']).drop_duplicates()

ill_links = df.copy()
ill_links = ill_links[ill_links['Description'] != 'Moved'].copy()
ill_links['code'] = ill_links['link'].str.replace("https://drive.google.com/file/d/", "", regex = False)
ill_links['code'] = ill_links['code'].str.replace("/view?usp=drivesdk", "", regex = False)
# ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=k'
ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=w320-h304'
ill_links['image_code'] = '<center><a href="' + ill_links['link'] + '" target="_blank" onclick="magicFunc(\'' + ill_links['code'] + '\')"><img src="' + ill_links['image_code'] + '" style="max-height:400px; max-width:200px"></a></center>'
ill_links['filename'] = ill_links['file'].str.replace(".*\\/", "", regex = True)
ill_links['shared_drive'] = ill_links['file'].str.replace("/content/drive/Shareddrives/", "", regex = False)
ill_links['shared_drive'] = ill_links['shared_drive'].str.replace("(.*?)\\/.*", "\\1", regex = True)
ill_links['Description'] = ill_links['Description'].str.replace("No Description", "", regex = False)

ill_links_title = ill_links.copy()

ill_links['ID'] = ill_links.index
ill_links_title['ID'] = ill_links_title.index
ill_links['title'] = ill_links['filename']
ill_links_title['title'] = ill_links_title['filename']
ill_links['url'] = ill_links['image_code']
ill_links_title['url'] = ill_links_title['image_code']
ill_links['abstract'] = ill_links['filename'].str.replace("\\-|\\_", " ", regex = True) + ' ' + ill_links['Description'].str.replace(",", " ", regex = False).astype(str)
ill_links_title['abstract'] = ill_links_title['filename'].str.replace('\\-|\\_', " ", regex = True)
ill_links['filepath'] = ill_links['file']
ill_links_title['filepath'] = ill_links_title['file']
ill_links['post_filepath'] = ill_links['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links_title['post_filepath'] = ill_links_title['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links = ill_links[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'post_filepath']]
ill_links_title = ill_links_title[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'Description', 'post_filepath']]

ill_check_lst = []
for i in range(0, 5):
    tmp_links = ill_links['url'].iloc[0].replace("/u/0/", f"/u/{i}/")
    tmp_links = tmp_links.replace('max-width:200px', 'max-width:25%')
    tmp_links = tmp_links.replace("<center>", "")
    tmp_links = tmp_links.replace("</center>", "")
    tmp_links = f'<p>{i}</p>' + tmp_links
    ill_check_lst.append(tmp_links)
ill_check_df = pd.DataFrame(ill_check_lst).T
ill_check_html = ill_check_df.to_html(escape = False, render_links = True, index = False, header = False)
    
ind_main, doc_main, tf_main = funky.index_documents(ill_links)
ind_title, doc_title, tf_title = funky.index_documents(ill_links_title)


def same_auth(username, password):
    return(username == os.environ['username']) & (password == os.environ['password'])


def search_index(search_text, sd, ks, sort_by, max_results, user_num, search_title):
    if search_title:
        output = funky.search(tf_title, doc_title, ind_title, search_text, search_type = 'AND', ranking = True)
    else:
        output = funky.search(tf_main, doc_main, ind_main, search_text, search_type='AND', ranking = True)
    output = [x for o in output for x in o if type(x) is not float]
    output_df = pd.DataFrame(output).reset_index(drop = True)
    
    if output_df.shape[0] > 0:
        
        output_df['url'] = output_df['url'].str.replace("/u/0/", f"/u/{int(user_num)}/", regex = False)
        if len(sd) == 1:
            output_df = output_df[(output_df['filepath'].str.contains(str(sd[0]), regex = False))]
        if len(ks) > 0:
            keystage_filter = '|'.join(ks).lower()
            if search_title:
                output_df['abstract'] = output_df['abstract'] + ' ' + output_df['Description']
            
            output_df['abstract'] = output_df['abstract'].str.lower()
            output_df['post_filepath'] = output_df['post_filepath'].str.lower()
            output_df['missing_desc'] = np.where(output_df['abstract'].str.contains('eyfs|ks1|ks2', regex = True), 0, 1)
            output_df2 = output_df[(output_df['abstract'].str.contains(keystage_filter, regex = True) | (output_df['missing_desc'] == 1))].copy()
            output_df2 = output_df2[(output_df2['post_filepath'].str.contains(keystage_filter, regex = True))]
            if output_df2.shape[0] == 0:
                output_df2 = output_df[(output_df['post_filepath'].str.contains(keystage_filter, regex = True))]
        
        output_df2['ind'] = output_df2.index
        if sort_by == 'Relevance':
            output_df2 = output_df2.sort_values(by = ['missing_desc', 'ind'], ascending = [True, True])
        elif sort_by == 'Date Created':
            output_df2 = output_df2.sort_values(by = ['Date Created'], ascending = False)
        elif sort_by == 'A-Z':
            output_df2 = output_df2.sort_values(by = ['title'], ascending = True)
            
        output_df2 = output_df2.head(int(max_results))
        output_df2 = output_df2[['url']].reset_index(drop = True)
        
        max_cols = 5
        output_df2['row'] = output_df2.index % max_cols
        for x in range(0, max_cols):
            tmp = output_df2[output_df2['row'] == x].reset_index(drop = True)
            tmp = tmp[['url']]
            if x == 0:
                final_df = tmp
            else:
                final_df = pd.concat([final_df, tmp], axis = 1)
        
        final_df = final_df.fillna('')
    else:
        final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])

    if final_df.shape[0] == 0 :
        final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
        
    return('<center>' + 
           final_df.to_html(escape = False, render_links = True, index = False, header = False) +
           '</center>')
    
    
def log_clicks(x):
    print(x)


with gr.Blocks(css="style.css") as app:
    with gr.Row():
        with gr.Column(min_width = 10):
            with gr.Row():
                gr.HTML("<center><p>If you can't see the images please make sure you are signed in to your Twinkl account on Google & you have access to the Shared Drives you are searching :)</p></center>")
                gr.HTML(ill_check_html)
                user_num = gr.Number(value = 0, label = 'Put lowest number of the alarm clock you can see')
            with gr.Row():
                search_prompt = gr.Textbox(placeholder = 'search for an illustration', label = 'Search', elem_id = 'search_term')
                title_search = gr.Checkbox(label = 'Search title only')
            # with gr.Row():
                shared_drive = gr.Dropdown(choices = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'], multiselect = True, label = 'Shared Drive', value = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'])
                key_stage = gr.Dropdown(choices = ['EYFS', 'KS1', 'KS2'], multiselect = True, label = 'Key Stage', value = ['EYFS', 'KS1', 'KS2'])
                sort_by = gr.Dropdown(choices = ['Relevance', 'Date Created', 'A-Z'], value = 'Relevance', multiselect = False, label = 'Sort By')
                max_return = gr.Dropdown(choices = ['10', '25', '50', '75', '100', '250', '500'], value = '10', multiselect = False, label = 'No. of Results to Return')
            with gr.Row():
                search_button = gr.Button(value="Search!")
            with gr.Row(): 
                output_df = gr.HTML() 
    search_button.click(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search], outputs=output_df) 
    search_prompt.submit(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search], outputs=output_df)
    app.load(_js = logging_js)

app.auth = (same_auth)
app.auth_message = ''


fapi = FastAPI()

fapi.add_middleware(SessionMiddleware, secret_key=os.environ['session_key'])

@fapi.middleware("http")
async def add_session_hash(request: Request, call_next):
    response = await call_next(request)
    session = request.cookies.get('session')
    if session:
        response.set_cookie(key='session', value=request.cookies.get('session'), httponly=True)
    return response

# custom get request handler with params to flag clicks
@ fapi.get("/track")
async def track(url: str, q: str, request: Request):
    
    if q is None:
        q = ''
    
    logger.flag([url, q, request.cookies['access-token']])
    return {"message": "ok"}


# mount Gradio app to FastAPI app
app2 = gr.mount_gradio_app(fapi, app, path="/")
# serve the app
if __name__ == "__main__":
    uvicorn.run(app2, host="0.0.0.0", port=7860)