File size: 10,684 Bytes
e54af7b
 
 
 
 
06c335d
e54af7b
 
 
 
 
 
 
a1620bf
72ccdcf
3beb244
2d44025
a1620bf
2d44025
 
 
a1620bf
2d44025
 
 
 
 
e54af7b
2d44025
 
 
 
 
 
 
 
 
 
a1620bf
2d44025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1620bf
2d44025
 
 
 
 
 
 
a1620bf
 
 
1267ef7
a1620bf
2d44025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1620bf
2d44025
a1620bf
 
 
2d44025
 
e54af7b
 
2d44025
a1620bf
 
 
e8d6766
e54af7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import functions as funky
import pandas as pd
import gradio as gr
import numpy as np
from datetime import datetime
import os

from datasets import load_dataset
from huggingface_hub import login

login(token = os.environ['HUB_TOKEN'])
dataset = load_dataset("bradley6597/illustration-test")
df = pd.DataFrame(dataset['train'])

logger = gr.HuggingFaceDatasetSaver(os.environ['HUB_TOKEN'], dataset_name='illustration_gdrive_logging_main', organization=None, private=True)
logger.setup([gr.Text(label="clicked_url"), gr.Text(label="seach_term"),  gr.Text(label = 'sessionhash'), gr.Text(label = 'datetime')], './flagged_data_points')


logging_js = '''
function magicFunc(x){
    let script = document.createElement('script');    
    script.innerHTML = "async function magicFunc(x){let z = document.getElementById('search_term').getElementsByTagName('textarea')[0].value; let data = {data: [x, z]}; var x = fetch('/api/track', {method: 'POST', headers: {'Content-Type': 'application/json'}, body: JSON.stringify(data)})}";
    document.head.appendChild(script);
}
'''


ill_links = df
ill_links = ill_links[ill_links['Description'] != 'Moved'].copy()
ill_links['code'] = ill_links['link'].str.replace("https://drive.google.com/file/d/", "", regex = False)
ill_links['code'] = ill_links['code'].str.replace("/view?usp=drivesdk", "", regex = False)
# ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=k'
ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=w320-h304'
ill_links['image_code'] = '<center><a href="' + ill_links['link'] + '" target="_blank" onclick="magicFunc(\'' + ill_links['code'] + '\')"><img src="' + ill_links['image_code'] + '" style="max-height:400px; max-width:200px"></a></center>'
ill_links['filename'] = ill_links['file'].str.replace(".*\\/", "", regex = True)
ill_links['shared_drive'] = ill_links['file'].str.replace("/content/drive/Shareddrives/", "", regex = False)
ill_links['shared_drive'] = ill_links['shared_drive'].str.replace("(.*?)\\/.*", "\\1", regex = True)
ill_links['Description'] = ill_links['Description'].str.replace("No Description", "", regex = False)
ill_links['image_code'].iloc[0]

ill_links_title = ill_links.copy()

ill_links['ID'] = ill_links.index
ill_links_title['ID'] = ill_links_title.index
ill_links['title'] = ill_links['filename']
ill_links_title['title'] = ill_links_title['filename']
ill_links['url'] = ill_links['image_code']
ill_links_title['url'] = ill_links_title['image_code']
ill_links['abstract'] = ill_links['filename'].str.replace("\\-|\\_", " ", regex = True) + ' ' + ill_links['Description'].str.replace(",", " ", regex = False).astype(str)
ill_links_title['abstract'] = ill_links_title['filename'].str.replace('\\-|\\_', " ", regex = True)
ill_links['filepath'] = ill_links['file']
ill_links_title['filepath'] = ill_links_title['file']
ill_links['post_filepath'] = ill_links['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links_title['post_filepath'] = ill_links_title['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links = ill_links[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'post_filepath']]
ill_links_title = ill_links_title[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'Description', 'post_filepath']]

ill_check_lst = []
for i in range(0, 5):
    tmp_links = ill_links['url'].iloc[0].replace("/u/0/", f"/u/{i}/")
    tmp_links = tmp_links.replace('max-width:200px', 'max-width:25%')
    tmp_links = tmp_links.replace("<center>", "")
    tmp_links = tmp_links.replace("</center>", "")
    tmp_links = f'<p>{i}</p>' + tmp_links
    ill_check_lst.append(tmp_links)
ill_check_df = pd.DataFrame(ill_check_lst).T
ill_check_html = ill_check_df.to_html(escape = False, render_links = True, index = False, header = False)
    
ind_main, doc_main, tf_main = funky.index_documents(ill_links)
ind_title, doc_title, tf_title = funky.index_documents(ill_links_title)


def same_auth(username, password):
    return(username == os.environ['username']) & (password == os.environ['password'])


def search_index(search_text, sd, ks, sort_by, max_results, user_num, search_title):
    if search_title:
        output = funky.search(tf_title, doc_title, ind_title, search_text, search_type = 'AND', ranking = True)
    else:
        output = funky.search(tf_main, doc_main, ind_main, search_text, search_type='AND', ranking = True)
    output = [x for o in output for x in o if type(x) is not float]
    output_df = pd.DataFrame(output).reset_index(drop = True)
    
    if output_df.shape[0] > 0:
        
        output_df['url'] = output_df['url'].str.replace("/u/0/", f"/u/{int(user_num)}/", regex = False)
        if len(sd) == 1:
            output_df = output_df[(output_df['filepath'].str.contains(str(sd[0]), regex = False))]
        if len(ks) > 0:
            keystage_filter = '|'.join(ks).lower()
            if search_title:
                output_df['abstract'] = output_df['abstract'] + ' ' + output_df['Description']
            
            output_df['abstract'] = output_df['abstract'].str.lower()
            output_df['post_filepath'] = output_df['post_filepath'].str.lower()
            output_df['missing_desc'] = np.where(output_df['abstract'].str.contains('eyfs|ks1|ks2', regex = True), 0, 1)
            output_df2 = output_df[(output_df['abstract'].str.contains(keystage_filter, regex = True) | (output_df['missing_desc'] == 1))].copy()
            output_df2 = output_df2[(output_df2['post_filepath'].str.contains(keystage_filter, regex = True))]
            if output_df2.shape[0] == 0:
                output_df2 = output_df[(output_df['post_filepath'].str.contains(keystage_filter, regex = True))]
        
        output_df2['ind'] = output_df2.index
        if sort_by == 'Relevance':
            output_df2 = output_df2.sort_values(by = ['missing_desc', 'ind'], ascending = [True, True])
        elif sort_by == 'Date Created':
            output_df2 = output_df2.sort_values(by = ['Date Created'], ascending = False)
        elif sort_by == 'A-Z':
            output_df2 = output_df2.sort_values(by = ['title'], ascending = True)
            
        output_df2 = output_df2.head(int(max_results))
        output_df2 = output_df2[['url']].reset_index(drop = True)
        
        max_cols = 5
        output_df2['row'] = output_df2.index % max_cols
        for x in range(0, max_cols):
            tmp = output_df2[output_df2['row'] == x].reset_index(drop = True)
            tmp = tmp[['url']]
            if x == 0:
                final_df = tmp
            else:
                final_df = pd.concat([final_df, tmp], axis = 1)
        
        final_df = final_df.fillna('')
    else:
        final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
    
    if final_df.shape[0] == 0 :
        final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
        
    return('<center>' + 
           final_df.to_html(escape = False, render_links = True, index = False, header = False) +
           '</center>')
    
def search_logging(url: str, q: str, request: gr.Request):
    if url == q:
        url = ''
    session_id = getattr(request.cookies, 'access-token')
    logger.flag([url, q, session_id, str(datetime.now())])


with gr.Blocks(css="style.css") as app:
    with gr.Row():
        with gr.Column(min_width = 10):
            with gr.Row():
                gr.HTML("<center><p>If you can't see the images please make sure you are signed in to your Twinkl account on Google & you have access to the Shared Drives you are searching :)</p></center>")
                gr.HTML(ill_check_html)
                user_num = gr.Number(value = 0, label = 'Put lowest number of the alarm clock you can see')
            with gr.Row():
                search_prompt = gr.Textbox(placeholder = 'search for an illustration', label = 'Search', elem_id = 'search_term')
                title_search = gr.Checkbox(label = 'Search title only')
            # with gr.Row():
                shared_drive = gr.Dropdown(choices = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'], multiselect = True, label = 'Shared Drive', value = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'])
                key_stage = gr.Dropdown(choices = ['EYFS', 'KS1', 'KS2'], multiselect = True, label = 'Key Stage', value = ['EYFS', 'KS1', 'KS2'])
                sort_by = gr.Dropdown(choices = ['Relevance', 'Date Created', 'A-Z'], value = 'Relevance', multiselect = False, label = 'Sort By')
                max_return = gr.Dropdown(choices = ['10', '25', '50', '75', '100', '250', '500'], value = '10', multiselect = False, label = 'No. of Results to Return')
            with gr.Row():
                search_button = gr.Button(value="Search!")
            with gr.Row(): 
                output_df = gr.HTML() 
    
    search_button.click(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search], outputs=output_df) 
    search_prompt.submit(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search], outputs=output_df) 
    search_button.click(search_logging, inputs=[search_prompt, search_prompt], outputs=None, api_name='track') 
    search_prompt.submit(search_logging, inputs=[search_prompt, search_prompt], outputs=None, api_name='track')
    app.load(_js = logging_js)

app.auth = (same_auth)
app.auth_message = ''

app.launch(debug=True, 
            share=False, 
            height=768,
            auth=same_auth 
            ) 
 
# app.close() 

# from fastapi import FastAPI, Request
# import uvicorn
# from starlette.middleware.sessions import SessionMiddleware
# fapi = FastAPI()

# fapi.add_middleware(SessionMiddleware, secret_key=os.environ['session_key'])

# @fapi.middleware("http")
# async def add_session_hash(request: Request, call_next):
#     response = await call_next(request)
#     session = request.cookies.get('session')
#     if session:
#         response.set_cookie(key='session', value=request.cookies.get('session'), httponly=True)
#     return response

# # custom get request handler with params to flag clicks
# @ fapi.get("/track")
# async def track(url: str, q: str, request: Request):
    
#     print(request)
#     if q is None:
#         q = ''
    
#     logger.flag([url, q, request.cookies['access-token'], str(datetime.now())])
#     return {"message": "ok"}



# logger.flag(['test', 'test', 'test', str(datetime.now())])

# # mount Gradio app to FastAPI app
# app2 = gr.mount_gradio_app(fapi, app, path="/")
# # serve the app
# if __name__ == "__main__":
#     uvicorn.run(app2, host="0.0.0.0", port=7860)