bradley6597's picture
Update app.py
06c335d
raw
history blame
10.7 kB
import functions as funky
import pandas as pd
import gradio as gr
import numpy as np
from datetime import datetime
import os
from datasets import load_dataset
from huggingface_hub import login
login(token = os.environ['HUB_TOKEN'])
dataset = load_dataset("bradley6597/illustration-test")
df = pd.DataFrame(dataset['train'])
logger = gr.HuggingFaceDatasetSaver(os.environ['HUB_TOKEN'], dataset_name='illustration_gdrive_logging_main', organization=None, private=True)
logger.setup([gr.Text(label="clicked_url"), gr.Text(label="seach_term"), gr.Text(label = 'sessionhash'), gr.Text(label = 'datetime')], './flagged_data_points')
logging_js = '''
function magicFunc(x){
let script = document.createElement('script');
script.innerHTML = "async function magicFunc(x){let z = document.getElementById('search_term').getElementsByTagName('textarea')[0].value; let data = {data: [x, z]}; var x = fetch('/api/track', {method: 'POST', headers: {'Content-Type': 'application/json'}, body: JSON.stringify(data)})}";
document.head.appendChild(script);
}
'''
ill_links = df
ill_links = ill_links[ill_links['Description'] != 'Moved'].copy()
ill_links['code'] = ill_links['link'].str.replace("https://drive.google.com/file/d/", "", regex = False)
ill_links['code'] = ill_links['code'].str.replace("/view?usp=drivesdk", "", regex = False)
# ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=k'
ill_links['image_code'] = 'https://lh3.google.com/u/0/d/' + ill_links['code'] + '=w320-h304'
ill_links['image_code'] = '<center><a href="' + ill_links['link'] + '" target="_blank" onclick="magicFunc(\'' + ill_links['code'] + '\')"><img src="' + ill_links['image_code'] + '" style="max-height:400px; max-width:200px"></a></center>'
ill_links['filename'] = ill_links['file'].str.replace(".*\\/", "", regex = True)
ill_links['shared_drive'] = ill_links['file'].str.replace("/content/drive/Shareddrives/", "", regex = False)
ill_links['shared_drive'] = ill_links['shared_drive'].str.replace("(.*?)\\/.*", "\\1", regex = True)
ill_links['Description'] = ill_links['Description'].str.replace("No Description", "", regex = False)
ill_links['image_code'].iloc[0]
ill_links_title = ill_links.copy()
ill_links['ID'] = ill_links.index
ill_links_title['ID'] = ill_links_title.index
ill_links['title'] = ill_links['filename']
ill_links_title['title'] = ill_links_title['filename']
ill_links['url'] = ill_links['image_code']
ill_links_title['url'] = ill_links_title['image_code']
ill_links['abstract'] = ill_links['filename'].str.replace("\\-|\\_", " ", regex = True) + ' ' + ill_links['Description'].str.replace(",", " ", regex = False).astype(str)
ill_links_title['abstract'] = ill_links_title['filename'].str.replace('\\-|\\_', " ", regex = True)
ill_links['filepath'] = ill_links['file']
ill_links_title['filepath'] = ill_links_title['file']
ill_links['post_filepath'] = ill_links['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links_title['post_filepath'] = ill_links_title['filepath'].str.replace(".*?\\/KS1 EYFS\\/", "", regex = True)
ill_links = ill_links[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'post_filepath']]
ill_links_title = ill_links_title[['ID', 'title', 'url', 'abstract', 'filepath', 'Date Created', 'Description', 'post_filepath']]
ill_check_lst = []
for i in range(0, 5):
tmp_links = ill_links['url'].iloc[0].replace("/u/0/", f"/u/{i}/")
tmp_links = tmp_links.replace('max-width:200px', 'max-width:25%')
tmp_links = tmp_links.replace("<center>", "")
tmp_links = tmp_links.replace("</center>", "")
tmp_links = f'<p>{i}</p>' + tmp_links
ill_check_lst.append(tmp_links)
ill_check_df = pd.DataFrame(ill_check_lst).T
ill_check_html = ill_check_df.to_html(escape = False, render_links = True, index = False, header = False)
ind_main, doc_main, tf_main = funky.index_documents(ill_links)
ind_title, doc_title, tf_title = funky.index_documents(ill_links_title)
def same_auth(username, password):
return(username == os.environ['username']) & (password == os.environ['password'])
def search_index(search_text, sd, ks, sort_by, max_results, user_num, search_title):
if search_title:
output = funky.search(tf_title, doc_title, ind_title, search_text, search_type = 'AND', ranking = True)
else:
output = funky.search(tf_main, doc_main, ind_main, search_text, search_type='AND', ranking = True)
output = [x for o in output for x in o if type(x) is not float]
output_df = pd.DataFrame(output).reset_index(drop = True)
if output_df.shape[0] > 0:
output_df['url'] = output_df['url'].str.replace("/u/0/", f"/u/{int(user_num)}/", regex = False)
if len(sd) == 1:
output_df = output_df[(output_df['filepath'].str.contains(str(sd[0]), regex = False))]
if len(ks) > 0:
keystage_filter = '|'.join(ks).lower()
if search_title:
output_df['abstract'] = output_df['abstract'] + ' ' + output_df['Description']
output_df['abstract'] = output_df['abstract'].str.lower()
output_df['post_filepath'] = output_df['post_filepath'].str.lower()
output_df['missing_desc'] = np.where(output_df['abstract'].str.contains('eyfs|ks1|ks2', regex = True), 0, 1)
output_df2 = output_df[(output_df['abstract'].str.contains(keystage_filter, regex = True) | (output_df['missing_desc'] == 1))].copy()
output_df2 = output_df2[(output_df2['post_filepath'].str.contains(keystage_filter, regex = True))]
if output_df2.shape[0] == 0:
output_df2 = output_df[(output_df['post_filepath'].str.contains(keystage_filter, regex = True))]
output_df2['ind'] = output_df2.index
if sort_by == 'Relevance':
output_df2 = output_df2.sort_values(by = ['missing_desc', 'ind'], ascending = [True, True])
elif sort_by == 'Date Created':
output_df2 = output_df2.sort_values(by = ['Date Created'], ascending = False)
elif sort_by == 'A-Z':
output_df2 = output_df2.sort_values(by = ['title'], ascending = True)
output_df2 = output_df2.head(int(max_results))
output_df2 = output_df2[['url']].reset_index(drop = True)
max_cols = 5
output_df2['row'] = output_df2.index % max_cols
for x in range(0, max_cols):
tmp = output_df2[output_df2['row'] == x].reset_index(drop = True)
tmp = tmp[['url']]
if x == 0:
final_df = tmp
else:
final_df = pd.concat([final_df, tmp], axis = 1)
final_df = final_df.fillna('')
else:
final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
if final_df.shape[0] == 0 :
final_df = pd.DataFrame(['<h3>No Results Found :(</h3>'])
return('<center>' +
final_df.to_html(escape = False, render_links = True, index = False, header = False) +
'</center>')
def search_logging(url: str, q: str, request: gr.Request):
if url == q:
url = ''
session_id = getattr(request.cookies, 'access-token')
logger.flag([url, q, session_id, str(datetime.now())])
with gr.Blocks(css="style.css") as app:
with gr.Row():
with gr.Column(min_width = 10):
with gr.Row():
gr.HTML("<center><p>If you can't see the images please make sure you are signed in to your Twinkl account on Google & you have access to the Shared Drives you are searching :)</p></center>")
gr.HTML(ill_check_html)
user_num = gr.Number(value = 0, label = 'Put lowest number of the alarm clock you can see')
with gr.Row():
search_prompt = gr.Textbox(placeholder = 'search for an illustration', label = 'Search', elem_id = 'search_term')
title_search = gr.Checkbox(label = 'Search title only')
# with gr.Row():
shared_drive = gr.Dropdown(choices = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'], multiselect = True, label = 'Shared Drive', value = ['Illustrations - 01-10 to 07-22', 'Illustrations - Now'])
key_stage = gr.Dropdown(choices = ['EYFS', 'KS1', 'KS2'], multiselect = True, label = 'Key Stage', value = ['EYFS', 'KS1', 'KS2'])
sort_by = gr.Dropdown(choices = ['Relevance', 'Date Created', 'A-Z'], value = 'Relevance', multiselect = False, label = 'Sort By')
max_return = gr.Dropdown(choices = ['10', '25', '50', '75', '100', '250', '500'], value = '10', multiselect = False, label = 'No. of Results to Return')
with gr.Row():
search_button = gr.Button(value="Search!")
with gr.Row():
output_df = gr.HTML()
search_button.click(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search], outputs=output_df)
search_prompt.submit(search_index, inputs=[search_prompt, shared_drive, key_stage, sort_by, max_return, user_num, title_search], outputs=output_df)
search_button.click(search_logging, inputs=[search_prompt, search_prompt], outputs=None, api_name='track')
search_prompt.submit(search_logging, inputs=[search_prompt, search_prompt], outputs=None, api_name='track')
app.load(_js = logging_js)
app.auth = (same_auth)
app.auth_message = ''
app.launch(debug=True,
share=False,
height=768,
# auth=("twinkl", "twinkl432!")
)
# app.close()
# from fastapi import FastAPI, Request
# import uvicorn
# from starlette.middleware.sessions import SessionMiddleware
# fapi = FastAPI()
# fapi.add_middleware(SessionMiddleware, secret_key=os.environ['session_key'])
# @fapi.middleware("http")
# async def add_session_hash(request: Request, call_next):
# response = await call_next(request)
# session = request.cookies.get('session')
# if session:
# response.set_cookie(key='session', value=request.cookies.get('session'), httponly=True)
# return response
# # custom get request handler with params to flag clicks
# @ fapi.get("/track")
# async def track(url: str, q: str, request: Request):
# print(request)
# if q is None:
# q = ''
# logger.flag([url, q, request.cookies['access-token'], str(datetime.now())])
# return {"message": "ok"}
# logger.flag(['test', 'test', 'test', str(datetime.now())])
# # mount Gradio app to FastAPI app
# app2 = gr.mount_gradio_app(fapi, app, path="/")
# # serve the app
# if __name__ == "__main__":
# uvicorn.run(app2, host="0.0.0.0", port=7860)