File size: 2,382 Bytes
68ed9a2
 
 
 
1613f96
 
 
cc7bfac
1613f96
 
 
 
 
 
 
 
 
 
6bf4f4e
bd9f032
05a2196
 
bd9f032
 
 
 
 
 
1613f96
 
 
6654a4e
1442a9d
1613f96
 
827199d
1613f96
 
9b88843
1613f96
 
 
 
 
 
 
6bf4f4e
1613f96
 
 
 
 
 
 
 
 
 
 
6bf4f4e
1613f96
6bf4f4e
1613f96
 
e9f2fe4
1613f96
e9f2fe4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# flake8: noqa E501

from dataclasses import dataclass
from enum import Enum


@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str


# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
    # task_key, metric_key, title
    task00 = Task("naive_judge", "score", "NaïveJudge")
    task01 = Task("human_eval_solidity_pass_1", "score", "HumanEval for Solidity (pass@1)")
    task02 = Task("human_eval_solidity_pass_3", "score", "HumanEval for Solidity (pass@3)")
    task03 = Task("rouge1", "score", "ROUGE-unigrams")
    task04 = Task("rouge2", "score", "ROUGE-bigrams")
    task05 = Task("rougeL", "score", "ROUGE-Longest Common Subsequence")
    task06 = Task("rougeLsum", "score", "ROUGE-Lsum")
    task07 = Task("bleu", "score", "Bleu")
    task08 = Task("brevity_penalty", "score", "Brevity Penalty")
# ---------------------------------------------------

# Your leaderboard name
TITLE = """<br><img src="file/images/solbench.svg" width="500"  style="display: block; margin-left: auto; margin-right: auto;">
<h2 align="center" id="space-title">IQ Code | Solidity Leaderboard</h2>"""

# What does your leaderboard evaluate?
INTRODUCTION_TEXT = ""

# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = """
## How it works

## Reproducibility
To reproduce our results, here is the commands you can run:

"""

EVALUATION_REQUESTS_TEXT = """
## Some good practices before submitting a model

### 1) Make sure you can load your model and tokenizer using AutoClasses:
```python
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("your model name", revision=revision)
model = AutoModel.from_pretrained("your model name", revision=revision)
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
```
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.

Note: make sure your model is public.

### 2) Fill up your model card
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
"""
EVALUATION_SCRIPT = ''
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = ''