File size: 2,587 Bytes
68ed9a2 1613f96 7592671 1613f96 5a908b8 1613f96 6bf4f4e 1613f96 6bf4f4e 7592671 6bf4f4e 1613f96 6bf4f4e 1613f96 6bf4f4e 1613f96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# flake8: noqa E501
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
from src.utils import get_model_name_from_filepath
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df = df.sort_values(by=[AutoEvalColumn.solbench.name], ascending=False)
df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_evaluation_requests_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation requestss requested."""
all_evals = []
def process_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as fp:
data = json.load(fp)
except (json.JSONDecodeError, UnicodeDecodeError) as e:
print(f"Error reading or decoding {file_path}: {e}")
return None
model_name = get_model_name_from_filepath(file_path)
data[EvalQueueColumn.model.name] = make_clickable_model(model_name)
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
return data
for root, _, files in os.walk(save_path):
for file in files:
if file.endswith('.json'):
file_path = os.path.join(root, file)
data = process_file(file_path)
if data:
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]
|