File size: 7,899 Bytes
68ed9a2
 
 
 
6bf4f4e
 
1613f96
 
729427c
1613f96
 
 
 
 
6bf4f4e
729427c
1613f96
 
 
 
 
 
 
 
 
 
 
 
729427c
1613f96
729427c
1613f96
6bf4f4e
 
 
 
 
 
 
 
 
 
 
1613f96
 
 
 
 
 
e9f2fe4
6bf4f4e
1613f96
 
6bf4f4e
e9f2fe4
 
 
 
 
1613f96
 
 
6bf4f4e
1613f96
 
e9f2fe4
 
 
 
 
 
1613f96
 
 
 
e9f2fe4
 
 
 
 
 
1613f96
 
6bf4f4e
 
 
 
1613f96
 
 
 
 
 
 
 
 
 
e9f2fe4
1613f96
 
 
f4f0bdc
 
 
 
 
 
 
 
 
 
d227bf3
1613f96
 
 
 
 
 
 
 
 
 
be8b8f3
1613f96
 
be8b8f3
1613f96
811fa97
 
 
 
 
 
 
 
68ed9a2
be8b8f3
1613f96
 
6bf4f4e
1613f96
 
 
6bf4f4e
1613f96
 
 
 
6bf4f4e
1613f96
 
 
 
 
 
6bf4f4e
1613f96
 
 
 
6bf4f4e
1613f96
 
 
 
 
8a05ef9
1613f96
 
 
 
 
 
64a4821
1613f96
 
 
 
 
6bf4f4e
 
 
 
4c0c41f
6bf4f4e
 
 
 
 
 
 
 
 
 
 
 
1613f96
64a4821
 
 
 
 
 
1613f96
64a4821
1613f96
 
6bf4f4e
1613f96
6bf4f4e
 
1613f96
 
 
 
 
7592671
 
 
 
 
 
 
 
 
1613f96
 
525c77d
1613f96
649b643
f8e2509
ef01ece
649b643
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# flake8: noqa E501

import shutil

import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_REQUESTS_TEXT,
    EVALUATION_SCRIPT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    Precision,
    WeightType,
    fields,
)
from src.envs import (
    API,
    CACHE_PATH,
    EVAL_REQUESTS_PATH,
    EVAL_RESULTS_PATH,
    REPO_ID,
    REQUESTS_REPO,
    RESULTS_REPO,
    TOKEN,
)
from src.populate import get_evaluation_requests_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

# Space initialisation
shutil.rmtree(CACHE_PATH, ignore_errors=True)
try:
    snapshot_download(
        repo_id=REQUESTS_REPO,
        local_dir=EVAL_REQUESTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()

try:
    snapshot_download(
        repo_id=RESULTS_REPO,
        local_dir=EVAL_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()

LEADERBOARD_DF = get_leaderboard_df(
    EVAL_RESULTS_PATH,
    EVAL_REQUESTS_PATH,
    COLS,
    BENCHMARK_COLS,
)

(
    finished_eval_requests_df,
    running_eval_requests_df,
    pending_eval_requests_df,
) = get_evaluation_requests_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Columns",
        ),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        # filter_columns=[
        #     ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Floating-point format"),
        #     ColumnFilter(
        #         AutoEvalColumn.params.name,
        #         type="slider",
        #         min=1,
        #         max=500,
        #         label="Number of parameters (billions)",
        #     ),
        # ],
        bool_checkboxgroup_label=' ',
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ† Ranking", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("🧠 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
            with gr.Accordion(
                        "Evaluation script",
                        open=False,
                    ):
                gr.Markdown(
                    EVALUATION_SCRIPT,
                    elem_classes="markdown-text",
                )

        with gr.TabItem("πŸ§ͺ Submissions", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_REQUESTS_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished ({len(finished_eval_requests_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_requests_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending ({len(pending_eval_requests_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_requests_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# βœ‰οΈ Submission", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" ") for t in ModelType if t in [ModelType.PT, ModelType.FT]],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )
                    # precision = gr.Dropdown(
                    #     choices=[i.value.name for i in Precision if i != Precision.Unknown],
                    #     label="Precision",
                    #     multiselect=False,
                    #     value="bfloat16",
                    #     interactive=True,
                    # )
                    # weight_type = gr.Dropdown(
                    #     choices=[i.value.name for i in WeightType],
                    #     label="Weights type",
                    #     multiselect=False,
                    #     value="Original",
                    #     interactive=True,
                    # )
                    # base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit")
            submission_result = gr.Markdown()
            
            def submit_with_braindao_check(model_name, revision, model_type):
                if model_name.split("/")[0] == "braindao":
                    model_type = ModelType.BrainDAO.to_str(" ")
                return add_new_eval(model_name, revision, model_type)
            
            submit_button.click(
                submit_with_braindao_check,
                [
                    model_name_textbox,
                    # base_model_name_textbox,
                    revision_name_textbox,
                    # precision,
                    # weight_type,
                    model_type,
                ],
                submission_result,
            )

    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=900)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(
    server_name="0.0.0.0",
    allowed_paths=["images/solbench.svg"],
)