File size: 7,899 Bytes
68ed9a2 6bf4f4e 1613f96 729427c 1613f96 6bf4f4e 729427c 1613f96 729427c 1613f96 729427c 1613f96 6bf4f4e 1613f96 e9f2fe4 6bf4f4e 1613f96 6bf4f4e e9f2fe4 1613f96 6bf4f4e 1613f96 e9f2fe4 1613f96 e9f2fe4 1613f96 6bf4f4e 1613f96 e9f2fe4 1613f96 f4f0bdc d227bf3 1613f96 be8b8f3 1613f96 be8b8f3 1613f96 811fa97 68ed9a2 be8b8f3 1613f96 6bf4f4e 1613f96 6bf4f4e 1613f96 6bf4f4e 1613f96 6bf4f4e 1613f96 6bf4f4e 1613f96 8a05ef9 1613f96 64a4821 1613f96 6bf4f4e 4c0c41f 6bf4f4e 1613f96 64a4821 1613f96 64a4821 1613f96 6bf4f4e 1613f96 6bf4f4e 1613f96 7592671 1613f96 525c77d 1613f96 649b643 f8e2509 ef01ece 649b643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# flake8: noqa E501
import shutil
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_REQUESTS_TEXT,
EVALUATION_SCRIPT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
)
from src.envs import (
API,
CACHE_PATH,
EVAL_REQUESTS_PATH,
EVAL_RESULTS_PATH,
REPO_ID,
REQUESTS_REPO,
RESULTS_REPO,
TOKEN,
)
from src.populate import get_evaluation_requests_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
# Space initialisation
shutil.rmtree(CACHE_PATH, ignore_errors=True)
try:
snapshot_download(
repo_id=REQUESTS_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
try:
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(
EVAL_RESULTS_PATH,
EVAL_REQUESTS_PATH,
COLS,
BENCHMARK_COLS,
)
(
finished_eval_requests_df,
running_eval_requests_df,
pending_eval_requests_df,
) = get_evaluation_requests_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Columns",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
# filter_columns=[
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Floating-point format"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=1,
# max=500,
# label="Number of parameters (billions)",
# ),
# ],
bool_checkboxgroup_label=' ',
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π Ranking", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π§ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Accordion(
"Evaluation script",
open=False,
):
gr.Markdown(
EVALUATION_SCRIPT,
elem_classes="markdown-text",
)
with gr.TabItem("π§ͺ Submissions", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_REQUESTS_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished ({len(finished_eval_requests_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_requests_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending ({len(pending_eval_requests_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_requests_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈ Submission", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" ") for t in ModelType if t in [ModelType.PT, ModelType.FT]],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="bfloat16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit")
submission_result = gr.Markdown()
def submit_with_braindao_check(model_name, revision, model_type):
if model_name.split("/")[0] == "braindao":
model_type = ModelType.BrainDAO.to_str(" ")
return add_new_eval(model_name, revision, model_type)
submit_button.click(
submit_with_braindao_check,
[
model_name_textbox,
# base_model_name_textbox,
revision_name_textbox,
# precision,
# weight_type,
model_type,
],
submission_result,
)
# with gr.Row():
# with gr.Accordion("π Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=900)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(
server_name="0.0.0.0",
allowed_paths=["images/solbench.svg"],
)
|