|
|
|
|
|
|
|
|
|
import glob |
|
import json |
|
import os |
|
from dataclasses import dataclass |
|
|
|
import dateutil |
|
import numpy as np |
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType |
|
from src.submission.check_validity import is_model_on_hub |
|
from src.utils import get_model_name_from_filepath, get_org_and_model_names_from_filepath, get_request_hash |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
"""Represents one full evaluation. Built from a combination of the result and request file for a given run. |
|
""" |
|
eval_name: str |
|
model_name: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: dict |
|
precision: Precision = Precision.Unknown |
|
model_type: ModelType = ModelType.Unknown |
|
weight_type: WeightType = WeightType.Original |
|
architecture: str = "Unknown" |
|
license: str = "Unknown" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
|
|
@classmethod |
|
def init_from_json_file(cls, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
if 'human_eval_solidity_pass_1' not in data['results']: |
|
data['results']['human_eval_solidity_pass_1'] = {'score': 0} |
|
|
|
if 'human_eval_solidity_pass_3' not in data['results']: |
|
data['results']['human_eval_solidity_pass_3'] = {'score': 0} |
|
|
|
org, model = get_org_and_model_names_from_filepath(json_filepath) |
|
config = data.get("config") |
|
|
|
|
|
precision = Precision.from_str(config.get("model_dtype")) |
|
|
|
result_key = f"{org}_{model}_{precision.value.name}" |
|
model_name = get_model_name_from_filepath(json_filepath) |
|
|
|
still_on_hub, _, model_config = is_model_on_hub( |
|
model_name, |
|
config.get("model_sha", "main"), |
|
trust_remote_code=True, |
|
test_tokenizer=False, |
|
) |
|
architecture = "Unknown" |
|
if model_config is not None: |
|
architectures = getattr(model_config, "architectures", None) |
|
if architectures: |
|
architecture = ";".join(architectures) |
|
|
|
|
|
|
|
results = {} |
|
for task in Tasks: |
|
task = task.value |
|
|
|
|
|
|
|
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) |
|
if accs.size == 0 or any([acc is None for acc in accs]): |
|
continue |
|
|
|
mean_acc = np.mean(accs) * 100.0 |
|
results[task.benchmark] = mean_acc |
|
|
|
return cls( |
|
eval_name=result_key, |
|
model_name=model_name, |
|
org=org, |
|
model=model, |
|
results=results, |
|
precision=precision, |
|
revision=config.get("model_sha", ""), |
|
still_on_hub=still_on_hub, |
|
architecture=architecture |
|
) |
|
|
|
def update_with_request_file(self, requests_path): |
|
"""Finds the relevant request file for the current model and updates info with it""" |
|
request_file = get_request_file_for_model( |
|
requests_path, |
|
self.model_name, |
|
self.revision, |
|
self.precision.value.name, |
|
) |
|
|
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
self.model_type = ModelType.from_str(request.get("model_type", "")) |
|
self.weight_type = WeightType[request.get("weight_type", "Original")] |
|
self.license = request.get("license", "Unknown") |
|
self.likes = request.get("likes", 0) |
|
self.num_params = request.get("params", 0) |
|
self.date = request.get("submitted_time", "") |
|
except Exception as error: |
|
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}") |
|
print(f"Error: {error}") |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
|
|
scores = { |
|
'naive_judge': self.results.get('naive_judge', 0), |
|
'human_eval_solidity_pass_1': self.results.get('human_eval_solidity_pass_1', 0), |
|
'human_eval_solidity_pass_3': self.results.get('human_eval_solidity_pass_3', 0) |
|
} |
|
|
|
solbench = 0 |
|
non_zero_scores = {k: v for k, v in scores.items() if v != 0} |
|
if non_zero_scores: |
|
weights = { |
|
'naive_judge': 0.3, |
|
'human_eval_solidity_pass_1': 0.5, |
|
'human_eval_solidity_pass_3': 0.2 |
|
} |
|
total_weight = sum(weights[k] for k in non_zero_scores) |
|
solbench = sum(scores[k] * weights[k] / total_weight for k in non_zero_scores) |
|
|
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
AutoEvalColumn.precision.name: self.precision.value.name, |
|
AutoEvalColumn.model_type.name: self.model_type.value.name, |
|
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, |
|
AutoEvalColumn.weight_type.name: self.weight_type.value.name, |
|
AutoEvalColumn.architecture.name: self.architecture, |
|
AutoEvalColumn.model.name: make_clickable_model(self.model_name), |
|
AutoEvalColumn.revision.name: self.revision, |
|
|
|
AutoEvalColumn.solbench.name: solbench, |
|
AutoEvalColumn.license.name: self.license, |
|
AutoEvalColumn.likes.name: self.likes, |
|
AutoEvalColumn.params.name: self.num_params, |
|
AutoEvalColumn.still_on_hub.name: self.still_on_hub, |
|
} |
|
|
|
for task in Tasks: |
|
data_dict[task.value.col_name] = self.results[task.value.benchmark] |
|
|
|
return data_dict |
|
|
|
|
|
def get_request_file_for_model( |
|
requests_path: str, |
|
model_name: str, |
|
revision: str, |
|
precision: str, |
|
): |
|
request_hash = get_request_hash(model_name, revision, precision) |
|
filepath = os.path.join(requests_path, model_name, '{}.json'.format(request_hash)) |
|
print(f'Loading {filepath}...') |
|
filepath = glob.glob(filepath)[0] |
|
return filepath |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]): |
|
continue |
|
|
|
|
|
try: |
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
except dateutil.parser._parser.ParserError: |
|
files = [files[-1]] |
|
|
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
eval_result.update_with_request_file(requests_path) |
|
|
|
|
|
eval_name = eval_result.eval_name |
|
if eval_name in eval_results.keys(): |
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) |
|
else: |
|
eval_results[eval_name] = eval_result |
|
|
|
results = [] |
|
for v in eval_results.values(): |
|
try: |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
continue |
|
|
|
return results |
|
|