#!/usr/bin/env python # -*- coding: utf-8 -*- # flake8: noqa E501 import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results from src.utils import get_model_name_from_filepath def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] df = pd.DataFrame.from_records(all_data_json) # df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) df = df.sort_values(by=[AutoEvalColumn.solbench.name], ascending=False) df = df[cols].round(decimals=2) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] return df def get_evaluation_requests_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation requestss requested.""" all_evals = [] def process_file(file_path): try: with open(file_path, 'r', encoding='utf-8') as fp: data = json.load(fp) except (json.JSONDecodeError, UnicodeDecodeError) as e: print(f"Error reading or decoding {file_path}: {e}") return None model_name = get_model_name_from_filepath(file_path) data[EvalQueueColumn.model.name] = make_clickable_model(model_name) data[EvalQueueColumn.revision.name] = data.get("revision", "main") return data for root, _, files in os.walk(save_path): for file in files: if file.endswith('.json'): file_path = os.path.join(root, file) data = process_file(file_path) if data: all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]