#!/usr/bin/env python # -*- coding: utf-8 -*- # flake8: noqa E501 import glob import json import os from dataclasses import dataclass import dateutil import numpy as np from src.display.formatting import make_clickable_model from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType from src.submission.check_validity import is_model_on_hub from src.utils import get_model_name_from_filepath, get_org_and_model_names_from_filepath, get_request_hash @dataclass class EvalResult: """Represents one full evaluation. Built from a combination of the result and request file for a given run. """ eval_name: str # org_model_precision (uid) model_name: str # org/model (path on hub) org: str model: str revision: str # commit hash, "" if main results: dict precision: Precision = Precision.Unknown model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ... weight_type: WeightType = WeightType.Original # Original or Adapter architecture: str = "Unknown" license: str = "Unknown" likes: int = 0 num_params: int = 0 date: str = "" # submission date of request file still_on_hub: bool = False @classmethod def init_from_json_file(cls, json_filepath): """Inits the result from the specific model result file""" with open(json_filepath) as fp: data = json.load(fp) if 'human_eval_solidity_pass_1' not in data['results']: data['results']['human_eval_solidity_pass_1'] = {'score': 0} if 'human_eval_solidity_pass_3' not in data['results']: data['results']['human_eval_solidity_pass_3'] = {'score': 0} org, model = get_org_and_model_names_from_filepath(json_filepath) config = data.get("config") # Precision precision = Precision.from_str(config.get("model_dtype")) result_key = f"{org}_{model}_{precision.value.name}" model_name = get_model_name_from_filepath(json_filepath) still_on_hub, _, model_config = is_model_on_hub( model_name, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False, ) architecture = "Unknown" if model_config is not None: architectures = getattr(model_config, "architectures", None) if architectures: architecture = ";".join(architectures) # Extract results available in this file # (some results are split in several files) results = {} for task in Tasks: task = task.value # We average all scores of a given metric # (not all metrics are present in all files) accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) if accs.size == 0 or any([acc is None for acc in accs]): continue mean_acc = np.mean(accs) * 100.0 results[task.benchmark] = mean_acc return cls( eval_name=result_key, model_name=model_name, org=org, model=model, results=results, precision=precision, revision=config.get("model_sha", ""), still_on_hub=still_on_hub, architecture=architecture ) def update_with_request_file(self, requests_path): """Finds the relevant request file for the current model and updates info with it""" request_file = get_request_file_for_model( requests_path, self.model_name, self.revision, self.precision.value.name, ) try: with open(request_file, "r") as f: request = json.load(f) self.model_type = ModelType.from_str(request.get("model_type", "")) self.weight_type = WeightType[request.get("weight_type", "Original")] self.license = request.get("license", "Unknown") self.likes = request.get("likes", 0) self.num_params = request.get("params", 0) self.date = request.get("submitted_time", "") except Exception as error: print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}") print(f"Error: {error}") def to_dict(self): """Converts the Eval Result to a dict compatible with our dataframe display""" # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks) scores = { 'naive_judge': self.results.get('naive_judge', 0), 'human_eval_solidity_pass_1': self.results.get('human_eval_solidity_pass_1', 0), 'human_eval_solidity_pass_3': self.results.get('human_eval_solidity_pass_3', 0) } solbench = 0 non_zero_scores = {k: v for k, v in scores.items() if v != 0} if non_zero_scores: weights = { 'naive_judge': 0.3, 'human_eval_solidity_pass_1': 0.5, 'human_eval_solidity_pass_3': 0.2 } total_weight = sum(weights[k] for k in non_zero_scores) solbench = sum(scores[k] * weights[k] / total_weight for k in non_zero_scores) data_dict = { "eval_name": self.eval_name, # not a column, just a save name, AutoEvalColumn.precision.name: self.precision.value.name, AutoEvalColumn.model_type.name: self.model_type.value.name, AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, AutoEvalColumn.weight_type.name: self.weight_type.value.name, AutoEvalColumn.architecture.name: self.architecture, AutoEvalColumn.model.name: make_clickable_model(self.model_name), AutoEvalColumn.revision.name: self.revision, # AutoEvalColumn.average.name: average, AutoEvalColumn.solbench.name: solbench, AutoEvalColumn.license.name: self.license, AutoEvalColumn.likes.name: self.likes, AutoEvalColumn.params.name: self.num_params, AutoEvalColumn.still_on_hub.name: self.still_on_hub, } for task in Tasks: data_dict[task.value.col_name] = self.results[task.value.benchmark] return data_dict def get_request_file_for_model( requests_path: str, model_name: str, revision: str, precision: str, ): request_hash = get_request_hash(model_name, revision, precision) filepath = os.path.join(requests_path, model_name, '{}.json'.format(request_hash)) print(f'Loading {filepath}...') filepath = glob.glob(filepath)[0] return filepath def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: """From the path of the results folder root, extract all needed info for results""" model_result_filepaths = [] for root, _, files in os.walk(results_path): # We should only have json files in model results if len(files) == 0 or any([not f.endswith(".json") for f in files]): continue # Sort the files by date try: files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) except dateutil.parser._parser.ParserError: files = [files[-1]] for file in files: model_result_filepaths.append(os.path.join(root, file)) eval_results = {} for model_result_filepath in model_result_filepaths: # Creation of result eval_result = EvalResult.init_from_json_file(model_result_filepath) eval_result.update_with_request_file(requests_path) # Store results of same eval together eval_name = eval_result.eval_name if eval_name in eval_results.keys(): eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) else: eval_results[eval_name] = eval_result results = [] for v in eval_results.values(): try: v.to_dict() # we test if the dict version is complete results.append(v) except KeyError: # not all eval values present continue return results