Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain import PromptTemplate | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import CTransformers | |
from langchain.chains import RetrievalQA | |
import geocoder | |
from geopy.distance import geodesic | |
import pandas as pd | |
import folium | |
from streamlit_folium import folium_static | |
from transformers import pipeline | |
import logging | |
#----------------- | |
# demonstrating use of a Vectordb store | |
#----------------- | |
DB_FAISS_PATH = 'vectorstores/db_faiss' | |
#----------------- | |
# Detecting the context if its to be a normal textual chat, load nearest clinic map or shopping link | |
#----------------- | |
classifier = pipeline("zero-shot-classification") | |
#----------------- | |
# Set up logging. mostly for debugging purposes only | |
#----------------- | |
logging.basicConfig(filename='app.log', level=logging.DEBUG, format='%(asctime)s %(message)s') | |
custom_prompt_template = """Use the following pieces of information to answer the user's question. | |
If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
Context: {context} | |
Question: {question} | |
Only return the helpful answer below and nothing else. | |
Helpful answer: | |
""" | |
def set_custom_prompt(): | |
prompt = PromptTemplate(template=custom_prompt_template, | |
input_variables=['context', 'question']) | |
return prompt | |
def retrieval_qa_chain(llm, prompt, db): | |
qa_chain = RetrievalQA.from_chain_type(llm=llm, | |
chain_type='stuff', | |
retriever=db.as_retriever(search_kwargs={'k': 2}), | |
return_source_documents=True, | |
chain_type_kwargs={'prompt': prompt} | |
) | |
return qa_chain | |
#----------------- | |
#function to load LLM from huggingface | |
#----------------- | |
def load_llm(): | |
llm = CTransformers( | |
model="TheBloke/Llama-2-7B-Chat-GGML", | |
model_type="llama", | |
max_new_tokens=512, | |
temperature=0.5 | |
) | |
return llm | |
#----------------- | |
#function that does 3 things | |
#1. loads maps using Folium if Context is nearest clinic (maps loads dataset from csv) | |
#2. loads a shopee link if Context is to buy things | |
#3. loads normal chat bubble which is to infer the chat bubble | |
#----------------- | |
def qa_bot(query, context=""): | |
logging.info(f"Received query: {query}, Context: {context}") | |
if context in ["nearest clinic","nearest TCM clinic","nearest TCM doctor","near me","nearest to me"]: | |
#----------- | |
# Loads map | |
#----------- | |
logging.info("Context matched for nearest TCM clinic.") | |
# Get user's current location | |
g = geocoder.ip('me') | |
user_lat, user_lon = g.latlng | |
# Load locations from the CSV file | |
locations_df = pd.read_csv("dataset/locations.csv") | |
# Filter locations within 5km from user's current location | |
filtered_locations_df = locations_df[locations_df.apply(lambda row: geodesic((user_lat, user_lon), (row['latitude'], row['longitude'])).kilometers <= 5, axis=1)] | |
# Create map centered at user's location | |
my_map = folium.Map(location=[user_lat, user_lon], zoom_start=12) | |
# Add markers with custom tooltips for filtered locations | |
for index, location in filtered_locations_df.iterrows(): | |
folium.Marker(location=[location['latitude'], location['longitude']], tooltip=f"{location['name']}<br>Reviews: {location['Stars_review']}<br>Avg Price $: {location['Price']}<br>Contact No: {location['Contact']}").add_to(my_map) | |
# Display map | |
folium_static(my_map) | |
return "[Map of Clinic Locations 5km from your current location]" | |
elif context in ["buy", "Ointment", "Hong You", "Feng You", "Fengyou", "Po chai pills"]: | |
#----------- | |
# Loads shopee link | |
#----------- | |
logging.info("Context matched for buying.") | |
# Create a hyperlink to shopee.sg based on the search query | |
shopee_link = f"<a href='https://shopee.sg/search?keyword={context}'>at this Shopee link!</a>" | |
return f"You may visit this page to purchase {context} {shopee_link}!" | |
else: | |
#----------- | |
# Loads normal chat bubble | |
#----------- | |
logging.info("Context not matched for nearest TCM clinic or buying.") | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={'device': 'cpu'}) | |
db = FAISS.load_local(DB_FAISS_PATH, embeddings) | |
llm = load_llm() | |
qa_prompt = set_custom_prompt() | |
qa = retrieval_qa_chain(llm, qa_prompt, db) | |
# Implement the question-answering logic here | |
response = qa({'query': query}) | |
return response['result'] | |
def add_vertical_space(spaces=1): | |
for _ in range(spaces): | |
st.markdown("---") | |
def main(): | |
st.set_page_config(page_title="Ask me anything about TCM") | |
with st.sidebar: | |
st.title('Welcome to Nexus AI TCM!') | |
st.markdown(''' | |
<style> | |
[data-testid=stSidebar] { | |
background-color: #ffffff; | |
} | |
</style> | |
<img src="https://huggingface.co/spaces/mathslearn/chatbot_test_streamlit/resolve/main/logo.jpeg" width=200> | |
''', unsafe_allow_html=True) | |
add_vertical_space(1) # Adjust the number of spaces as needed | |
st.title("Nexus AI TCM") | |
st.markdown( | |
""" | |
<style> | |
.chat-container { | |
display: flex; | |
flex-direction: column; | |
height: 400px; | |
overflow-y: auto; | |
padding: 10px; | |
color: white; /* Font color */ | |
} | |
.user-bubble { | |
background-color: #007bff; /* Blue color for user */ | |
align-self: flex-end; | |
border-radius: 10px; | |
padding: 8px; | |
margin: 5px; | |
max-width: 70%; | |
word-wrap: break-word; | |
} | |
.bot-bubble { | |
background-color: #363636; /* Slightly lighter background color */ | |
align-self: flex-start; | |
border-radius: 10px; | |
padding: 8px; | |
margin: 5px; | |
max-width: 70%; | |
word-wrap: break-word; | |
} | |
</style> | |
""" | |
, unsafe_allow_html=True) | |
conversation = st.session_state.get("conversation", []) | |
if "my_text" not in st.session_state: | |
st.session_state.my_text = "" | |
st.text_input("Enter text here", key="widget", on_change=submit) | |
query = st.session_state.my_text | |
if st.button("Ask"): | |
if query: | |
with st.spinner("Processing your question..."): # Display the processing message | |
conversation.append({"role": "user", "message": query}) | |
# Call your QA function | |
answer = qa_bot(query, infer_context(query)) | |
conversation.append({"role": "bot", "message": answer}) | |
st.session_state.conversation = conversation | |
else: | |
st.warning("Please input a question.") | |
# | |
# Display the conversation history | |
chat_container = st.empty() | |
chat_bubbles = ''.join([f'<div class="{c["role"]}-bubble">{c["message"]}</div>' for c in conversation]) | |
chat_container.markdown(f'<div class="chat-container">{chat_bubbles}</div>', unsafe_allow_html=True) | |
def submit(): | |
st.session_state.my_text = st.session_state.widget | |
st.session_state.widget = "" | |
#----------- | |
# Setting the Context | |
#----------- | |
def infer_context(query): | |
""" | |
Function to infer context based on the user's query. | |
Modify this function to suit your context detection needs. | |
""" | |
labels = ["TCM","sick","herbs","traditional","nearest clinic","nearest TCM clinic","nearest TCM doctor","near me","nearest to me", "Ointment", "Hong You", "Feng You", "Fengyou", "Po chai pills"] | |
result = classifier(query, labels) | |
predicted_label = result["labels"][0] | |
return predicted_label | |
if __name__ == "__main__": | |
main() | |