Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,966 Bytes
5ed9923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import json
import os
import sys
import einops
import lightning as L
import lpips
import omegaconf
import torch
import wandb
# Add MAST3R and PixelSplat to the sys.path to prevent issues during importing
sys.path.append('src/pixelsplat_src')
sys.path.append('src/mast3r_src')
sys.path.append('src/mast3r_src/dust3r')
from src.mast3r_src.dust3r.dust3r.losses import L21
from src.mast3r_src.mast3r.losses import ConfLoss, Regr3D
import data.scannetpp.scannetpp as scannetpp
import src.mast3r_src.mast3r.model as mast3r_model
import src.pixelsplat_src.benchmarker as benchmarker
import src.pixelsplat_src.decoder_splatting_cuda as pixelsplat_decoder
import utils.compute_ssim as compute_ssim
import utils.export as export
import utils.geometry as geometry
import utils.loss_mask as loss_mask
import utils.sh_utils as sh_utils
import workspace
class MAST3RGaussians(L.LightningModule):
def __init__(self, config):
super().__init__()
# Save the config
self.config = config
# The encoder which we use to predict the 3D points and Gaussians,
# trained as a modified MAST3R model. The model's configuration is
# primarily defined by the pretrained checkpoint that we load, see
# MASt3R's README.md
self.encoder = mast3r_model.AsymmetricMASt3R(
pos_embed='RoPE100',
patch_embed_cls='ManyAR_PatchEmbed',
img_size=(512, 512),
head_type='gaussian_head',
output_mode='pts3d+gaussian+desc24',
depth_mode=('exp', -mast3r_model.inf, mast3r_model.inf),
conf_mode=('exp', 1, mast3r_model.inf),
enc_embed_dim=1024,
enc_depth=24,
enc_num_heads=16,
dec_embed_dim=768,
dec_depth=12,
dec_num_heads=12,
two_confs=True,
use_offsets=config.use_offsets,
sh_degree=config.sh_degree if hasattr(config, 'sh_degree') else 1
)
self.encoder.requires_grad_(False)
self.encoder.downstream_head1.gaussian_dpt.dpt.requires_grad_(True)
self.encoder.downstream_head2.gaussian_dpt.dpt.requires_grad_(True)
# The decoder which we use to render the predicted Gaussians into
# images, lightly modified from PixelSplat
self.decoder = pixelsplat_decoder.DecoderSplattingCUDA(
background_color=[0.0, 0.0, 0.0]
)
self.benchmarker = benchmarker.Benchmarker()
# Loss criteria
if config.loss.average_over_mask:
self.lpips_criterion = lpips.LPIPS('vgg', spatial=True)
else:
self.lpips_criterion = lpips.LPIPS('vgg')
if config.loss.mast3r_loss_weight is not None:
self.mast3r_criterion = ConfLoss(Regr3D(L21, norm_mode='?avg_dis'), alpha=0.2)
self.encoder.downstream_head1.requires_grad_(True)
self.encoder.downstream_head2.requires_grad_(True)
self.save_hyperparameters()
def forward(self, view1, view2):
# Freeze the encoder and decoder
with torch.no_grad():
(shape1, shape2), (feat1, feat2), (pos1, pos2) = self.encoder._encode_symmetrized(view1, view2)
dec1, dec2 = self.encoder._decoder(feat1, pos1, feat2, pos2)
# Train the downstream heads
pred1 = self.encoder._downstream_head(1, [tok.float() for tok in dec1], shape1)
pred2 = self.encoder._downstream_head(2, [tok.float() for tok in dec2], shape2)
pred1['covariances'] = geometry.build_covariance(pred1['scales'], pred1['rotations'])
pred2['covariances'] = geometry.build_covariance(pred2['scales'], pred2['rotations'])
learn_residual = True
if learn_residual:
new_sh1 = torch.zeros_like(pred1['sh'])
new_sh2 = torch.zeros_like(pred2['sh'])
new_sh1[..., 0] = sh_utils.RGB2SH(einops.rearrange(view1['original_img'], 'b c h w -> b h w c'))
new_sh2[..., 0] = sh_utils.RGB2SH(einops.rearrange(view2['original_img'], 'b c h w -> b h w c'))
pred1['sh'] = pred1['sh'] + new_sh1
pred2['sh'] = pred2['sh'] + new_sh2
# Update the keys to make clear that pts3d and means are in view1's frame
pred2['pts3d_in_other_view'] = pred2.pop('pts3d')
pred2['means_in_other_view'] = pred2.pop('means')
return pred1, pred2
def training_step(self, batch, batch_idx):
_, _, h, w = batch["context"][0]["img"].shape
view1, view2 = batch['context']
# Predict using the encoder/decoder and calculate the loss
pred1, pred2 = self.forward(view1, view2)
color, _ = self.decoder(batch, pred1, pred2, (h, w))
# Calculate losses
mask = loss_mask.calculate_loss_mask(batch)
loss, mse, lpips = self.calculate_loss(
batch, view1, view2, pred1, pred2, color, mask,
apply_mask=self.config.loss.apply_mask,
average_over_mask=self.config.loss.average_over_mask,
calculate_ssim=False
)
# Log losses
self.log_metrics('train', loss, mse, lpips)
return loss
def validation_step(self, batch, batch_idx):
_, _, h, w = batch["context"][0]["img"].shape
view1, view2 = batch['context']
# Predict using the encoder/decoder and calculate the loss
pred1, pred2 = self.forward(view1, view2)
color, _ = self.decoder(batch, pred1, pred2, (h, w))
# Calculate losses
mask = loss_mask.calculate_loss_mask(batch)
loss, mse, lpips = self.calculate_loss(
batch, view1, view2, pred1, pred2, color, mask,
apply_mask=self.config.loss.apply_mask,
average_over_mask=self.config.loss.average_over_mask,
calculate_ssim=False
)
# Log losses
self.log_metrics('val', loss, mse, lpips)
return loss
def test_step(self, batch, batch_idx):
_, _, h, w = batch["context"][0]["img"].shape
view1, view2 = batch['context']
num_targets = len(batch['target'])
# Predict using the encoder/decoder and calculate the loss
with self.benchmarker.time("encoder"):
pred1, pred2 = self.forward(view1, view2)
with self.benchmarker.time("decoder", num_calls=num_targets):
color, _ = self.decoder(batch, pred1, pred2, (h, w))
# Calculate losses
mask = loss_mask.calculate_loss_mask(batch)
loss, mse, lpips, ssim = self.calculate_loss(
batch, view1, view2, pred1, pred2, color, mask,
apply_mask=self.config.loss.apply_mask,
average_over_mask=self.config.loss.average_over_mask,
calculate_ssim=True
)
# Log losses
self.log_metrics('test', loss, mse, lpips, ssim=ssim)
return loss
def on_test_end(self):
benchmark_file_path = os.path.join(self.config.save_dir, "benchmark.json")
self.benchmarker.dump(os.path.join(benchmark_file_path))
def calculate_loss(self, batch, view1, view2, pred1, pred2, color, mask, apply_mask=True, average_over_mask=True, calculate_ssim=False):
target_color = torch.stack([target_view['original_img'] for target_view in batch['target']], dim=1)
predicted_color = color
if apply_mask:
assert mask.sum() > 0, "There are no valid pixels in the mask!"
target_color = target_color * mask[..., None, :, :]
predicted_color = predicted_color * mask[..., None, :, :]
flattened_color = einops.rearrange(predicted_color, 'b v c h w -> (b v) c h w')
flattened_target_color = einops.rearrange(target_color, 'b v c h w -> (b v) c h w')
flattened_mask = einops.rearrange(mask, 'b v h w -> (b v) h w')
# MSE loss
rgb_l2_loss = (predicted_color - target_color) ** 2
if average_over_mask:
mse_loss = (rgb_l2_loss * mask[:, None, ...]).sum() / mask.sum()
else:
mse_loss = rgb_l2_loss.mean()
# LPIPS loss
lpips_loss = self.lpips_criterion(flattened_target_color, flattened_color, normalize=True)
if average_over_mask:
lpips_loss = (lpips_loss * flattened_mask[:, None, ...]).sum() / flattened_mask.sum()
else:
lpips_loss = lpips_loss.mean()
# Calculate the total loss
loss = 0
loss += self.config.loss.mse_loss_weight * mse_loss
loss += self.config.loss.lpips_loss_weight * lpips_loss
# MAST3R Loss
if self.config.loss.mast3r_loss_weight is not None:
mast3r_loss = self.mast3r_criterion(view1, view2, pred1, pred2)[0]
loss += self.config.loss.mast3r_loss_weight * mast3r_loss
# Masked SSIM
if calculate_ssim:
if average_over_mask:
ssim_val = compute_ssim.compute_ssim(flattened_target_color, flattened_color, full=True)
ssim_val = (ssim_val * flattened_mask[:, None, ...]).sum() / flattened_mask.sum()
else:
ssim_val = compute_ssim.compute_ssim(flattened_target_color, flattened_color, full=False)
ssim_val = ssim_val.mean()
return loss, mse_loss, lpips_loss, ssim_val
return loss, mse_loss, lpips_loss
def log_metrics(self, prefix, loss, mse, lpips, ssim=None):
values = {
f'{prefix}/loss': loss,
f'{prefix}/mse': mse,
f'{prefix}/psnr': -10.0 * mse.log10(),
f'{prefix}/lpips': lpips,
}
if ssim is not None:
values[f'{prefix}/ssim'] = ssim
prog_bar = prefix != 'val'
sync_dist = prefix != 'train'
self.log_dict(values, prog_bar=prog_bar, sync_dist=sync_dist, batch_size=self.config.data.batch_size)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.encoder.parameters(), lr=self.config.opt.lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [self.config.opt.epochs // 2], gamma=0.1)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"interval": "epoch",
"frequency": 1,
},
}
def run_experiment(config):
# Set the seed
L.seed_everything(config.seed, workers=True)
# Set up loggers
os.makedirs(os.path.join(config.save_dir, config.name), exist_ok=True)
loggers = []
if config.loggers.use_csv_logger:
csv_logger = L.pytorch.loggers.CSVLogger(
save_dir=config.save_dir,
name=config.name
)
loggers.append(csv_logger)
if config.loggers.use_wandb:
wandb_logger = L.pytorch.loggers.WandbLogger(
project='gaussian_zero',
name=config.name,
save_dir=config.save_dir,
config=omegaconf.OmegaConf.to_container(config),
)
if wandb.run is not None:
wandb.run.log_code(".")
loggers.append(wandb_logger)
# Set up profiler
if config.use_profiler:
profiler = L.pytorch.profilers.PyTorchProfiler(
dirpath=config.save_dir,
filename='trace',
export_to_chrome=True,
schedule=torch.profiler.schedule(wait=0, warmup=1, active=3),
on_trace_ready=torch.profiler.tensorboard_trace_handler(config.save_dir),
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA
],
profile_memory=True,
with_stack=True
)
else:
profiler = None
# Model
print('Loading Model')
model = MAST3RGaussians(config)
if config.use_pretrained:
ckpt = torch.load(config.pretrained_mast3r_path)
_ = model.encoder.load_state_dict(ckpt['model'], strict=False)
del ckpt
# Training Datasets
print(f'Building Datasets')
train_dataset = scannetpp.get_scannet_dataset(
config.data.root,
'train',
config.data.resolution,
num_epochs_per_epoch=config.data.epochs_per_train_epoch,
)
data_loader_train = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
batch_size=config.data.batch_size,
num_workers=config.data.num_workers,
)
val_dataset = scannetpp.get_scannet_test_dataset(
config.data.root,
alpha=0.5,
beta=0.5,
resolution=config.data.resolution,
use_every_n_sample=100,
)
data_loader_val = torch.utils.data.DataLoader(
val_dataset,
shuffle=False,
batch_size=config.data.batch_size,
num_workers=config.data.num_workers,
)
# Training
print('Training')
trainer = L.Trainer(
accelerator="gpu",
benchmark=True,
callbacks=[
L.pytorch.callbacks.LearningRateMonitor(logging_interval='epoch', log_momentum=True),
export.SaveBatchData(save_dir=config.save_dir),
],
check_val_every_n_epoch=1,
default_root_dir=config.save_dir,
devices=config.devices,
gradient_clip_val=config.opt.gradient_clip_val,
log_every_n_steps=10,
logger=loggers,
max_epochs=config.opt.epochs,
profiler=profiler,
strategy="ddp_find_unused_parameters_true" if len(config.devices) > 1 else "auto",
)
trainer.fit(model, train_dataloaders=data_loader_train, val_dataloaders=data_loader_val)
# Testing
original_save_dir = config.save_dir
results = {}
for alpha, beta in ((0.9, 0.9), (0.7, 0.7), (0.5, 0.5), (0.3, 0.3)):
test_dataset = scannetpp.get_scannet_test_dataset(
config.data.root,
alpha=alpha,
beta=beta,
resolution=config.data.resolution,
use_every_n_sample=10
)
data_loader_test = torch.utils.data.DataLoader(
test_dataset,
shuffle=False,
batch_size=config.data.batch_size,
num_workers=config.data.num_workers,
)
masking_configs = ((True, False), (True, True))
for apply_mask, average_over_mask in masking_configs:
new_save_dir = os.path.join(
original_save_dir,
f'alpha_{alpha}_beta_{beta}_apply_mask_{apply_mask}_average_over_mask_{average_over_mask}'
)
os.makedirs(new_save_dir, exist_ok=True)
model.config.save_dir = new_save_dir
L.seed_everything(config.seed, workers=True)
# Training
trainer = L.Trainer(
accelerator="gpu",
benchmark=True,
callbacks=[export.SaveBatchData(save_dir=config.save_dir),],
default_root_dir=config.save_dir,
devices=config.devices,
log_every_n_steps=10,
strategy="ddp_find_unused_parameters_true" if len(config.devices) > 1 else "auto",
)
model.lpips_criterion = lpips.LPIPS('vgg', spatial=average_over_mask)
model.config.loss.apply_mask = apply_mask
model.config.loss.average_over_mask = average_over_mask
res = trainer.test(model, dataloaders=data_loader_test)
results[f"alpha: {alpha}, beta: {beta}, apply_mask: {apply_mask}, average_over_mask: {average_over_mask}"] = res
# Save the results
save_path = os.path.join(original_save_dir, 'results.json')
with open(save_path, 'w') as f:
json.dump(results, f)
if __name__ == "__main__":
# Setup the workspace (eg. load the config, create a directory for results at config.save_dir, etc.)
config = workspace.load_config(sys.argv[1], sys.argv[2:])
if os.getenv("LOCAL_RANK", '0') == '0':
config = workspace.create_workspace(config)
# Run training
run_experiment(config)
|