Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import pickle | |
import joblib | |
import pandas as pd | |
from sklearn.neighbors import NearestNeighbors | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.metrics.pairwise import cosine_similarity | |
# Load the LSTM model | |
lstm_model = load_model('lstm_model.h5') | |
# Load the Tokenizer used during training | |
with open('tokenizer.pkl', 'rb') as tokenizer_file: | |
tokenizer = pickle.load(tokenizer_file) | |
class_mapping = {"Happy": 0, "Sad": 1, "Calm": 2, "Anger": 3} | |
numerical_to_label = {v: k for k, v in class_mapping.items()} | |
# Load the KNN model | |
knn_model = joblib.load('knn_model.joblib') | |
# Load the dataset | |
df = pd.read_csv('df1.csv') | |
df = df.dropna() | |
# Preprocess for KNN | |
audio_feature_columns = ['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', | |
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', | |
'duration_ms', 'time_signature'] | |
audio_features = df[audio_feature_columns] | |
mood_cats = df[['mood_cats']] | |
audio_features_scaled = StandardScaler().fit_transform(audio_features) | |
audio_features_df = pd.DataFrame(audio_features_scaled, columns=audio_feature_columns) | |
combined_features = pd.concat([mood_cats, audio_features_df], axis=1) | |
# Calculate similarity matrix for content-based | |
audio_features_scaled_content = StandardScaler().fit_transform(audio_features) | |
combined_features_content = pd.concat([mood_cats, pd.DataFrame(audio_features_scaled_content)], axis=1) | |
similarity_matrix = cosine_similarity(combined_features_content) | |
def recommend_cont(song_index, num_recommendations=5): | |
song_similarity = similarity_matrix[song_index] | |
similar_songs = sorted(list(enumerate(song_similarity)), key=lambda x: x[1], reverse=True)[1:num_recommendations+1] | |
recommended_song_indices = [idx for idx, similarity in similar_songs] | |
recommended_songs = df.iloc[recommended_song_indices].copy() | |
recommended_songs['score'] = [similarity for idx, similarity in similar_songs] | |
return recommended_songs | |
def recommend_knn(query_index, n_recommendations=5): | |
distances, indices = knn_model.kneighbors(combined_features.iloc[query_index].values.reshape(1, -1), n_neighbors=n_recommendations) | |
recommended_songs = df.iloc[indices.flatten()].copy() | |
recommended_songs['score'] = 1 / (1 + distances.flatten()) | |
return recommended_songs | |
def hybrid_recommendation(song_index, top_n=10): | |
content_based_recs = recommend_cont(song_index, top_n) | |
knn_based_recs = recommend_knn(song_index, top_n) | |
combined_recs = pd.concat([content_based_recs, knn_based_recs]) | |
# Convert 'score' column to numeric | |
combined_recs['score'] = pd.to_numeric(combined_recs['score'], errors='coerce') | |
# Use maximum value for each group instead of mean | |
hybrid_recs = combined_recs.groupby(combined_recs.index)['score'].max().sort_values(ascending=False).head(top_n) | |
return hybrid_recs | |
# Streamlit app | |
st.title('Music Recommendation and Emotion Detection') | |
# Emotion Detection | |
st.subheader('Emotion Detection from Song Lyrics') | |
user_input = st.text_input('Enter a Text:') | |
prediction = None | |
if st.button('Predict Emotion'): | |
sequence = tokenizer.texts_to_sequences([user_input]) | |
padded_sequence = pad_sequences(sequence, maxlen=50) | |
prediction = lstm_model.predict(padded_sequence) | |
if prediction is not None: | |
for i in range(len(prediction[0])): | |
label = numerical_to_label[i] | |
probability = prediction[0][i] | |
threshold = 0.5 | |
if probability > threshold: | |
st.write(f'Predicted Emotion: {label}') | |
# Music Recommendation | |
st.subheader('Music Recommendation') | |
song_index_to_recommend = st.number_input('Enter song index:', min_value=0, max_value=len(df)-1, value=0) | |
hybrid_recs = hybrid_recommendation(song_index_to_recommend) | |
st.write("Hybrid Recommendations:") | |
if not hybrid_recs.empty: | |
for index in hybrid_recs.index: | |
st.write(f"Song Index: {index}, Title: {df.iloc[index]['track_name']}, Artist: {df.iloc[index]['track_artist']}, Score: {hybrid_recs.loc[index, 'score']}") | |
else: | |
st.write("No recommendations found.") | |