import streamlit as st import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import pickle import joblib import pandas as pd from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler from sklearn.metrics.pairwise import cosine_similarity # Load the LSTM model lstm_model = load_model('lstm_model.h5') # Load the Tokenizer used during training with open('tokenizer.pkl', 'rb') as tokenizer_file: tokenizer = pickle.load(tokenizer_file) class_mapping = {"Happy": 0, "Sad": 1, "Calm": 2, "Anger": 3} numerical_to_label = {v: k for k, v in class_mapping.items()} # Load the KNN model knn_model = joblib.load('knn_model.joblib') # Load the dataset df = pd.read_csv('df1.csv') df = df.dropna() # Preprocess for KNN audio_feature_columns = ['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'duration_ms', 'time_signature'] audio_features = df[audio_feature_columns] mood_cats = df[['mood_cats']] audio_features_scaled = StandardScaler().fit_transform(audio_features) audio_features_df = pd.DataFrame(audio_features_scaled, columns=audio_feature_columns) combined_features = pd.concat([mood_cats, audio_features_df], axis=1) # Calculate similarity matrix for content-based audio_features_scaled_content = StandardScaler().fit_transform(audio_features) combined_features_content = pd.concat([mood_cats, pd.DataFrame(audio_features_scaled_content)], axis=1) similarity_matrix = cosine_similarity(combined_features_content) def recommend_cont(song_index, num_recommendations=5): song_similarity = similarity_matrix[song_index] similar_songs = sorted(list(enumerate(song_similarity)), key=lambda x: x[1], reverse=True)[1:num_recommendations+1] recommended_song_indices = [idx for idx, similarity in similar_songs] recommended_songs = df.iloc[recommended_song_indices].copy() recommended_songs['score'] = [similarity for idx, similarity in similar_songs] return recommended_songs def recommend_knn(query_index, n_recommendations=5): distances, indices = knn_model.kneighbors(combined_features.iloc[query_index].values.reshape(1, -1), n_neighbors=n_recommendations) recommended_songs = df.iloc[indices.flatten()].copy() recommended_songs['score'] = 1 / (1 + distances.flatten()) return recommended_songs def hybrid_recommendation(song_index, top_n=10): content_based_recs = recommend_cont(song_index, top_n) knn_based_recs = recommend_knn(song_index, top_n) combined_recs = pd.concat([content_based_recs, knn_based_recs]) # Convert 'score' column to numeric combined_recs['score'] = pd.to_numeric(combined_recs['score'], errors='coerce') hybrid_recs = combined_recs.groupby(combined_recs.index).mean().sort_values(by='score', ascending=False).head(top_n) return hybrid_recs # Streamlit app st.title('Music Recommendation and Emotion Detection') # Emotion Detection st.subheader('Emotion Detection from Song Lyrics') user_input = st.text_input('Enter a Text:') prediction = None if st.button('Predict Emotion'): sequence = tokenizer.texts_to_sequences([user_input]) padded_sequence = pad_sequences(sequence, maxlen=50) prediction = lstm_model.predict(padded_sequence) if prediction is not None: for i in range(len(prediction[0])): label = numerical_to_label[i] probability = prediction[0][i] threshold = 0.5 if probability > threshold: st.write(f'Predicted Emotion: {label}') # Music Recommendation st.subheader('Music Recommendation') song_index_to_recommend = st.number_input('Enter song index:', min_value=0, max_value=len(df)-1, value=0) hybrid_recs = hybrid_recommendation(song_index_to_recommend) st.write("Hybrid Recommendations:") if not hybrid_recs.empty: for index in hybrid_recs.index: st.write(f"Song Index: {index}, Title: {df.iloc[index]['track_name']}, Artist: {df.iloc[index]['track_artist']}, Score: {hybrid_recs.loc[index, 'score']}") else: st.write("No recommendations found.")