Spaces:
Runtime error
Runtime error
File size: 2,224 Bytes
edc4276 01e4bba c4d5407 6868cdb 401d1a7 3f56ca4 01e4bba 1b42e45 d69f584 3f56ca4 c4d5407 6868cdb 3f56ca4 6868cdb c4d5407 29b39e7 3f56ca4 29b39e7 edc4276 3f56ca4 edc4276 6868cdb 3f56ca4 577a126 3f56ca4 577a126 3f56ca4 6868cdb 3f56ca4 577a126 3f56ca4 fb2d8d2 577a126 3f56ca4 1f9b2ed 3f56ca4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import streamlit as st
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import joblib
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
# Load the emotion prediction model
emotion_model = load_model('lstm_model.h5')
# Load the tokenizer (ensure it's the one used during training)
tokenizer = joblib.load('tokenizer.pkl')
# Load the dataset
df = pd.read_csv('df1.csv')
df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"], axis=1)
# Load the content-based recommendation module
recommend_cont_module = joblib.load('recommendation_cont_function.joblib')
# Call the function from the module
hybrid_recs = recommend_cont_module.recommend_cont(song_index=0)
# Load the hybrid recommendation function
hybrid_recommendation = joblib.load('hybrid_recommendation_function.joblib')
# Preprocess for content-based
audio_features = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
'duration_ms', 'time_signature']]
mood_cats = df[['mood_cats']]
scaler = StandardScaler()
audio_features_scaled = scaler.fit_transform(audio_features)
audio_features_df = pd.DataFrame(audio_features_scaled, columns=audio_features.columns)
mood_cats_df = pd.DataFrame(mood_cats)
combined_features_content = pd.concat([mood_cats_df, audio_features_df], axis=1)
# Set up the title of the app
st.title('Emotion and Audio Feature-based Song Recommendation System')
# Get data from index 0
query_data = df.iloc[0]
# Process the lyrics
sequence = tokenizer.texts_to_sequences([query_data['lyrics']])
padded_sequence = pad_sequences(sequence, maxlen=50)
emotion = emotion_model.predict(padded_sequence).flatten()
# Combine emotion and audio features for recommendation
combined_features_hybrid = np.concatenate([emotion, query_data[audio_features.columns].values])
# Generate recommendations using the hybrid model
hybrid_recs = hybrid_recommendation(song_index=0)
st.write("Emotion Detected:", emotion[0])
st.header('Recommended Songs (Hybrid)')
st.write(hybrid_recs)
|