File size: 8,189 Bytes
e2160a6
 
bff1c38
e2160a6
56dd0de
 
 
 
bff1c38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e976e07
bff1c38
 
 
 
 
 
 
 
 
 
e2160a6
 
7565e99
 
 
 
 
 
56dd0de
 
7565e99
 
 
 
 
 
 
 
 
 
 
e449023
7565e99
e2160a6
 
 
 
 
 
 
 
 
e449023
e2160a6
 
 
bff1c38
 
 
 
 
 
 
 
 
 
 
 
 
 
e2160a6
 
 
c19b32e
e2160a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7565e99
 
 
 
 
 
 
 
 
e2160a6
 
173dde9
c4900f0
e2160a6
 
 
 
 
c4900f0
e449023
7565e99
e449023
7565e99
 
e2160a6
 
 
56dd0de
e2160a6
 
5a79bf0
 
e2160a6
15e2df6
 
 
 
 
 
 
 
e2160a6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
import torch
import numpy as np
import diffusers
import os
hf_token = os.environ.get("HF_TOKEN")
from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel

ratios_map =  {
    0.5:{"width":704,"height":1408},
    0.57:{"width":768,"height":1344},
    0.68:{"width":832,"height":1216},
    0.72:{"width":832,"height":1152},
    0.78:{"width":896,"height":1152},
    0.82:{"width":896,"height":1088},
    0.88:{"width":960,"height":1088},
    0.94:{"width":960,"height":1024},
    1.00:{"width":1024,"height":1024},
    1.13:{"width":1088,"height":960},
    1.21:{"width":1088,"height":896},
    1.29:{"width":1152,"height":896},
    1.38:{"width":1152,"height":832},
    1.46:{"width":1216,"height":832},
    1.67:{"width":1280,"height":768},
    1.75:{"width":1344,"height":768},
    2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))

def get_size(init_image):
    w,h=init_image.size
    curr_ratio = w/h
    ind = np.argmin(np.abs(curr_ratio-ratios))
    ratio = ratios[ind]
    chosen_ratio  = ratios_map[ratio]
    w,h = chosen_ratio['width'], chosen_ratio['height']

    return w,h

device = "cuda" if torch.cuda.is_available() else "cpu"
unet = UNet2DConditionModel.from_pretrained(
    "briaai/BRIA-2.3-Inpainting",
    subfolder="unet",
    torch_dtype=torch.float16,
)

scheduler = DDIMScheduler.from_pretrained("briaai/BRIA-2.3", subfolder="scheduler", 
                                                        rescale_betas_zero_snr=True,prediction_type='v_prediction',timestep_spacing="trailing",clip_sample=False)

pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
    "briaai/BRIA-2.3",
    unet=unet,
    scheduler=scheduler,
    torch_dtype=torch.float16,
    force_zeros_for_empty_prompt=False
)
pipe = pipe.to(device)
pipe.force_zeros_for_empty_prompt = False

default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(dict, prompt="", negative_prompt="", guidance_scale=5, steps=30, strength=1.0, scheduler="EulerDiscreteScheduler"):
    if negative_prompt == "":
        negative_prompt = None

    
    init_image = dict["image"].convert("RGB")#.resize((1024, 1024))
    mask = dict["mask"].convert("RGB")#.resize((1024, 1024))

    w,h = get_size(init_image)

    init_image = init_image.resize((w, h))
    mask = mask.resize((w, h))
    
    # Resize to nearest ratio ?
    
    mask = np.array(mask)
    mask[mask>0]=255
    mask = Image.fromarray(mask)
    
    output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
    
    return output.images[0] #, gr.update(visible=True)


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## BRIA 2.3")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This is a demo for 
            <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image </a>. 
            BRIA 2.3 improve the generation of humans and illustrations compared to BRIA 2.2 while still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
          </p>
        ''')
    with gr.Row():
                with gr.Column():
                    image = gr.Image(sources=['upload'], tool='sketch', elem_id="image_upload", type="pil", label="Upload",height=400)
                    with gr.Row(elem_id="prompt-container", equal_height=True):
                        with gr.Row():
                            prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
                            btn = gr.Button("Inpaint!", elem_id="run_button")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row(equal_height=True):
                            guidance_scale = gr.Number(value=5, minimum=1.0, maximum=10.0, step=0.5, label="guidance_scale")
                            steps = gr.Number(value=30, minimum=20, maximum=50, step=1, label="steps")
                            strength = gr.Number(value=1, minimum=0.01, maximum=1.0, step=0.01, label="strength")
                            negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")

                        
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img", height=400)

            

    btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength], outputs=[image_out], api_name='run')
    prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength], outputs=[image_out])

    # gr.Examples(
    #             examples=[
    #                 ["./imgs/example.png"],
    #             ],
    #             fn=predict,
    #             inputs=[image],
    #             cache_examples=False,
    # )
    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)