Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,468 Bytes
e2160a6 bff1c38 e2160a6 56dd0de 571ef05 d1bb2c2 56dd0de bff1c38 e976e07 bff1c38 e2160a6 7565e99 56dd0de 7565e99 e449023 7565e99 e2160a6 194abb3 d1bb2c2 e2160a6 bff1c38 7e0218d bff1c38 e2160a6 e692d95 e2160a6 c19b32e e2160a6 7565e99 e2160a6 23cd110 c4900f0 e2160a6 c4900f0 e449023 7565e99 e449023 7565e99 e2160a6 56dd0de e2160a6 5a79bf0 e2160a6 15e2df6 e2160a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
import torch
import numpy as np
import diffusers
import os
import spaces
from PIL import Image
hf_token = os.environ.get("HF_TOKEN")
from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel
ratios_map = {
0.5:{"width":704,"height":1408},
0.57:{"width":768,"height":1344},
0.68:{"width":832,"height":1216},
0.72:{"width":832,"height":1152},
0.78:{"width":896,"height":1152},
0.82:{"width":896,"height":1088},
0.88:{"width":960,"height":1088},
0.94:{"width":960,"height":1024},
1.00:{"width":1024,"height":1024},
1.13:{"width":1088,"height":960},
1.21:{"width":1088,"height":896},
1.29:{"width":1152,"height":896},
1.38:{"width":1152,"height":832},
1.46:{"width":1216,"height":832},
1.67:{"width":1280,"height":768},
1.75:{"width":1344,"height":768},
2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))
def get_size(init_image):
w,h=init_image.size
curr_ratio = w/h
ind = np.argmin(np.abs(curr_ratio-ratios))
ratio = ratios[ind]
chosen_ratio = ratios_map[ratio]
w,h = chosen_ratio['width'], chosen_ratio['height']
return w,h
device = "cuda" if torch.cuda.is_available() else "cpu"
unet = UNet2DConditionModel.from_pretrained(
"briaai/BRIA-2.3-Inpainting",
subfolder="unet",
torch_dtype=torch.float16,
)
scheduler = DDIMScheduler.from_pretrained("briaai/BRIA-2.3", subfolder="scheduler",
rescale_betas_zero_snr=True,prediction_type='v_prediction',timestep_spacing="trailing",clip_sample=False)
pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
"briaai/BRIA-2.3",
unet=unet,
scheduler=scheduler,
torch_dtype=torch.float16,
force_zeros_for_empty_prompt=False
)
pipe = pipe.to(device)
pipe.force_zeros_for_empty_prompt = False
default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
@spaces.GPU(enable_queue=True)
def predict(dict, prompt="", negative_prompt="", guidance_scale=5, steps=30, strength=1.0):
if negative_prompt == "":
negative_prompt = None
init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024))
mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024))
w,h = get_size(init_image)
init_image = init_image.resize((w, h))
mask = mask.resize((w, h))
# Resize to nearest ratio ?
mask = np.array(mask)
mask[mask>0]=255
mask = Image.fromarray(mask)
output = pipe(prompt = prompt,width=w,height=h, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
return output.images[0] #, gr.update(visible=True)
css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''
image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## BRIA 2.3")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for
<a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image </a>.
BRIA 2.3 improve the generation of humans and illustrations compared to BRIA 2.2 while still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
</p>
''')
with gr.Row():
with gr.Column():
image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], brush=gr.Brush(colors=["#000000"], color_mode="fixed")) #gr.Image(sources=['upload'], tool='sketch', elem_id="image_upload", type="pil", label="Upload", height=400)
with gr.Row(elem_id="prompt-container", equal_height=True):
with gr.Row():
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
btn = gr.Button("Inpaint!", elem_id="run_button")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(equal_height=True):
guidance_scale = gr.Number(value=5, minimum=1.0, maximum=10.0, step=0.5, label="guidance_scale")
steps = gr.Number(value=30, minimum=20, maximum=50, step=1, label="steps")
strength = gr.Number(value=1, minimum=0.01, maximum=1.0, step=0.01, label="strength")
negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", height=400)
btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength], outputs=[image_out], api_name='run')
prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength], outputs=[image_out])
# gr.Examples(
# examples=[
# ["./imgs/example.png"],
# ],
# fn=predict,
# inputs=[image],
# cache_examples=False,
# )
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
</p>
</div>
"""
)
image_blocks.queue(max_size=25,api_open=False).launch(show_api=False) |