import gradio as gr import numpy as np import os from PIL import Image import requests from io import BytesIO import io import base64 hf_token = os.environ.get("HF_TOKEN_API_DEMO") # we get it from a secret env variable, such that it's private auth_headers = {"api_token": hf_token} def convert_mask_image_to_base64_string(mask_image): buffer = io.BytesIO() mask_image.save(buffer, format="PNG") # You can choose the format (e.g., "JPEG", "PNG") # Encode the buffer in base64 image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8') return f",{image_base64_string}" # for some reason the funciton which downloads image from base64 expects prefix of "," which is redundant in the url def download_image(url): response = requests.get(url) return Image.open(BytesIO(response.content)).convert("RGB") def eraser_api_call(image_base64_file, mask_base64_file, mask_type): url = "http://engine.prod.bria-api.com/v1/eraser" payload = { "file": image_base64_file, "mask_file": mask_base64_file, "mask_type": mask_type, } response = requests.post(url, json=payload, headers=auth_headers) response = response.json() res_image = download_image(response["result_url"]) return res_image def predict(dict): init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024)) mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024)) image_base64_file = convert_mask_image_to_base64_string(init_image) mask_base64_file = convert_mask_image_to_base64_string(mask) mask_type = "manual" gen_img = eraser_api_call(image_base64_file, mask_base64_file, mask_type) return gen_img css = ''' .gradio-container{max-width: 1100px !important} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} div#share-btn-container > div {flex-direction: row;background: black;align-items: center} #share-btn-container:hover {background-color: #060606} #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} #share-btn * {all: unset} #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} #share-btn-container .wrap {display: none !important} #share-btn-container.hidden {display: none!important} #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} #run_button { width: 100%; height: 50px; /* Set a fixed height for the button */ display: flex; align-items: center; justify-content: center; } #output-img img, #image_upload img { object-fit: contain; /* Ensure aspect ratio is preserved */ width: 100%; height: auto; /* Let height adjust automatically */ } #prompt-container{margin-top:-18px;} #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} ''' image_blocks = gr.Blocks(css=css, elem_id="total-container") with image_blocks as demo: with gr.Column(elem_id="col-container"): gr.Markdown("## BRIA Eraser API") gr.HTML('''
This demo showcases the BRIA Eraser capability, which allows users to remove specific elements or objects from images.
The pipeline comprises multiple components, including briaai/BRIA-2.3,
briaai/BRIA-2.3-ControlNet-Inpainting,
and briaai/BRIA-2.3-FAST-LORA, all trained on licensed data.
This ensures full legal liability coverage for copyright and privacy infringement.
Notes:
- High-resolution images may take longer to process.
- For multiple masks, results are better if all masks are included in inference.