import spaces import gradio as gr import torch from diffusers import ( AutoencoderKL, EulerAncestralDiscreteScheduler, ) from diffusers.utils import load_image from replace_bg.model.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline from replace_bg.model.controlnet import ControlNetModel from replace_bg.utilities import resize_image, remove_bg_from_image, paste_fg_over_image, get_control_image_tensor controlnet = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-BG-Gen", torch_dtype=torch.float16) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet, torch_dtype=torch.float16, vae=vae).to('cuda:0') pipe.scheduler = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, steps_offset=1 ) @spaces.GPU def generate_(prompt, negative_prompt, control_tensor, num_steps, controlnet_conditioning_scale, seed): generator = torch.Generator("cuda").manual_seed(seed) gen_img = pipe( negative_prompt=negative_prompt, prompt=prompt, controlnet_conditioning_scale=float(controlnet_conditioning_scale), num_inference_steps=num_steps, image = control_tensor, generator=generator ).images[0] return gen_img @spaces.GPU def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): image = resize_image(input_image) mask = remove_bg_from_image(image) control_tensor = get_control_image_tensor(pipe.vae, image, mask) gen_image = generate_(prompt, negative_prompt, control_tensor, num_steps, controlnet_conditioning_scale, seed) result_image = paste_fg_over_image(gen_image, image, mask) return result_image block = gr.Blocks().queue() with block: gr.Markdown("## BRIA Background Generation") gr.HTML('''
This is a demo for ControlNet background generation that using BRIA 2.3 text-to-image model as backbone. Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement. Go here for the BRIA 2.3 ControlNet Background Generation model card or Contact Bria for more information.
''') with gr.Row(): with gr.Column(): input_image = gr.Image(sources='upload', type="pil", label="Upload", elem_id="image_upload", height=600) # None for upload, ctrl+v and webcam prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") num_steps = gr.Slider(label="Number of steps", minimum=10, maximum=100, value=30, step=1) controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) run_button = gr.Button(value="Generate") with gr.Column(): result_gallery = gr.Image(label='Output', type="pil", show_label=True, elem_id="output-img") # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height=600) ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) gr.Examples( examples=[ ["./example1.png"], ["./example2.png"], ["./example3.png"], ["./example4.png"], ], fn=process, inputs=[input_image], cache_examples=False, ) block.launch(debug = True)