File size: 7,723 Bytes
e2160a6
 
bff1c38
e2160a6
56dd0de
d1bb2c2
56dd0de
711fa9a
bff1c38
e2160a6
 
711fa9a
 
7565e99
e449023
7565e99
e2160a6
 
 
 
 
 
 
 
 
1de1c90
e2160a6
3d2512c
bff1c38
711fa9a
 
e2160a6
8080c6c
1de1c90
 
e2160a6
e55b6fb
711fa9a
 
 
 
 
6ac7655
711fa9a
6ac7655
711fa9a
3e31463
711fa9a
3e31463
 
e2160a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7565e99
 
 
 
 
 
 
 
 
e2160a6
 
d6df9be
ba04723
 
3e31463
c4900f0
e2160a6
711fa9a
 
 
 
 
 
feafeae
 
e2160a6
 
c4900f0
e449023
711fa9a
 
7565e99
d6df9be
7565e99
e2160a6
 
 
56dd0de
e2160a6
 
1de1c90
 
e2160a6
15e2df6
 
 
 
 
 
 
 
e2160a6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import torch
import numpy as np
import diffusers
import os
from PIL import Image
hf_token = os.environ.get("HF_TOKEN")
from diffusers import AutoPipelineForText2Image


device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device)
pipe.load_ip_adapter("briaai/DEV-Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin")

default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(image, prompt="high quality, best quality", negative_prompt="", guidance_scale=5, steps=30, ip_adapter_scale = 1.0, width=1024, height=1024, seed=0):

    pipe.set_ip_adapter_scale(ip_adapter_scale)

    if negative_prompt == "":
        negative_prompt = None
    
    init_image = image.convert("RGB")
    # if center_crop is False:
    init_image = init_image.resize((224, 224))
    
    generator = torch.Generator(device="cpu").manual_seed(int(seed))
        
    output = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    ip_adapter_image=init_image,
    num_inference_steps=int(steps),
    generator=generator,
    height=int(height), width=int(width),
    guidance_scale=guidance_scale
    )

    torch.cuda.empty_cache
    return output.images[0] #, gr.update(visible=True)


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## BRIA 2.3")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This is a demo for 
            <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image </a>. 
            BRIA 2.3 improve the generation of humans and illustrations compared to BRIA 2.2 while still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
          </p>
        ''')
    with gr.Row():
                with gr.Column():
                    image = gr.Image(elem_id="image_upload", type="pil", label="Upload", height=400)
                    # image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
                    
                    
                    with gr.Row(elem_id="prompt-container", equal_height=True):
                        with gr.Row():
                            prompt = gr.Textbox(placeholder="Your prompt (you can leave it empty if you only want the image prompt as input)", show_label=False, elem_id="prompt")
                            btn = gr.Button("Generate!", elem_id="run_button")

                    with gr.Accordion(label="Settings", open=True):
                        with gr.Row(equal_height=True):
                            ip_adapter_scale = gr.Number(value=1.0, minimum=0.01, maximum=1.0, step=0.01, label="ip_adapter_scale")
                            width = gr.Number(value=1024, minimum=300, maximum=2000, step=1, label="width")
                            height = gr.Number(value=1024, minimum=300, maximum=2000, step=1, label="height")                    
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row(equal_height=True):
                            guidance_scale = gr.Number(value=5, minimum=1.0, maximum=10.0, step=0.5, label="guidance_scale")
                            steps = gr.Number(value=30, minimum=10, maximum=100, step=1, label="steps")
                            seed = gr.Number(value=0, minimum=0, maximum=100000, step=1, label="seed")                                                        
                            negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")
                            center_crop = gr.Checkbox(label="center_crop", info="If not checked, the image would be resized to square before it's fed to the model."),

                        
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img", height=400)

            

    btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, ip_adapter_scale, width, height, seed], outputs=[image_out], api_name='run')
    prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, ip_adapter_scale, width, height, seed], outputs=[image_out])

    # gr.Examples(
    #             examples=[
    #                 ["./imgs/example.png"],
    #             ],
    #             fn=predict,
    #             inputs=[image],
    #             cache_examples=False,
    # )
    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)