File size: 5,934 Bytes
e2160a6
 
bff1c38
e2160a6
56dd0de
38c7953
d1bb2c2
56dd0de
711fa9a
bff1c38
e2160a6
 
711fa9a
55fa117
7565e99
342f262
7565e99
342f262
e2160a6
342f262
 
 
e2160a6
342f262
0644651
e2160a6
c8d7ddc
342f262
e2160a6
342f262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44a703f
 
342f262
 
 
 
 
5c7e785
e2160a6
342f262
 
 
 
 
 
 
 
7565e99
342f262
6783a4b
342f262
7d64c5a
342f262
 
85881e3
342f262
 
 
 
 
 
842e3ae
342f262
7d64c5a
 
 
 
 
 
 
 
 
 
 
ddc7c4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d64c5a
 
342f262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddc7c4a
b0ef0b8
 
 
 
 
 
ddc7c4a
b0ef0b8
 
 
 
 
 
ddc7c4a
b0ef0b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2160a6
342f262
 
 
 
44a703f
342f262
 
 
 
 
 
 
fbc2540
342f262
e2160a6
 
342f262
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import torch
import numpy as np
import diffusers
import os
import random
from PIL import Image
hf_token = os.environ.get("HF_TOKEN")
from diffusers import AutoPipelineForText2Image


device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device)
pipe.load_ip_adapter("briaai/Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin")

# default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"

MAX_SEED = np.iinfo(np.int32).max

def predict(prompt, ip_adapter_image, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, center_crop=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    if not center_crop:
        ip_adapter_image = ip_adapter_image.resize((224,224))
    
    generator = torch.Generator(device="cpu").manual_seed(seed)
    pipe.set_ip_adapter_scale([ip_adapter_scale])
    
    image = pipe(
        prompt=prompt,
        ip_adapter_image=[ip_adapter_image],
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    
    return image, seed

examples = [
    ["high quality", "example1.png", 1.0, 1152, 896, 1000, False],
    ["capybara", "example2.png", 0.7, 1152, 896, 1000, False],
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 1024px;
}
#result img{
    object-position: top;
}
#result .image-container{
    height: 100%
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Bria's Image-Prompt-Adapter
        """)
                
        with gr.Row():
            with gr.Column():
                ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
                ip_adapter_scale = gr.Slider(
                    label="Image Input Scale",
                    info="Use 1 for creating image variations",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=1.0,
                )
            with gr.Column():
                result = gr.Image(label="Result", elem_id="result")
                prompt = gr.Text(
                    label="Prompt",
                    show_label=True,
                    lines=1,
                    placeholder="Enter your prompt",
                    container=True,
                    info='For image variation, leave empty or try a prompt like: "high quality".'
                )
            
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=2048,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=2048,
                step=32,
                value=1024,
            )
            run_button = gr.Button("Run", scale=0)
            

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            center_crop = gr.Checkbox(label="Center Crop image", value=False, info="If not checked, the IP-Adapter image input would be resized to a square.")            
            # with gr.Row():
            #     width = gr.Slider(
            #         label="Width",
            #         minimum=256,
            #         maximum=2048,
            #         step=32,
            #         value=1024,
            #     )
            #     height = gr.Slider(
            #         label="Height",
            #         minimum=256,
            #         maximum=2048,
            #         step=32,
            #         value=1024,
            #     )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=25,
                )
            
        
        gr.Examples(
            examples=examples,
            fn=predict,
            inputs=[prompt, ip_adapter_image, ip_adapter_scale, width, height, seed, randomize_seed],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=predict,
        inputs=[prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.queue(max_size=25,api_open=False).launch(show_api=False)

# image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)