Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,934 Bytes
e2160a6 bff1c38 e2160a6 56dd0de 38c7953 d1bb2c2 56dd0de 711fa9a bff1c38 e2160a6 711fa9a 55fa117 7565e99 342f262 7565e99 342f262 e2160a6 342f262 e2160a6 342f262 0644651 e2160a6 c8d7ddc 342f262 e2160a6 342f262 44a703f 342f262 5c7e785 e2160a6 342f262 7565e99 342f262 6783a4b 342f262 7d64c5a 342f262 85881e3 342f262 842e3ae 342f262 7d64c5a ddc7c4a 7d64c5a 342f262 ddc7c4a b0ef0b8 ddc7c4a b0ef0b8 ddc7c4a b0ef0b8 e2160a6 342f262 44a703f 342f262 fbc2540 342f262 e2160a6 342f262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import torch
import numpy as np
import diffusers
import os
import random
from PIL import Image
hf_token = os.environ.get("HF_TOKEN")
from diffusers import AutoPipelineForText2Image
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device)
pipe.load_ip_adapter("briaai/Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin")
# default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
MAX_SEED = np.iinfo(np.int32).max
def predict(prompt, ip_adapter_image, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, center_crop=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if not center_crop:
ip_adapter_image = ip_adapter_image.resize((224,224))
generator = torch.Generator(device="cpu").manual_seed(seed)
pipe.set_ip_adapter_scale([ip_adapter_scale])
image = pipe(
prompt=prompt,
ip_adapter_image=[ip_adapter_image],
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return image, seed
examples = [
["high quality", "example1.png", 1.0, 1152, 896, 1000, False],
["capybara", "example2.png", 0.7, 1152, 896, 1000, False],
]
css="""
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#result img{
object-position: top;
}
#result .image-container{
height: 100%
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Bria's Image-Prompt-Adapter
""")
with gr.Row():
with gr.Column():
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
ip_adapter_scale = gr.Slider(
label="Image Input Scale",
info="Use 1 for creating image variations",
minimum=0.0,
maximum=1.0,
step=0.05,
value=1.0,
)
with gr.Column():
result = gr.Image(label="Result", elem_id="result")
prompt = gr.Text(
label="Prompt",
show_label=True,
lines=1,
placeholder="Enter your prompt",
container=True,
info='For image variation, leave empty or try a prompt like: "high quality".'
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=32,
value=1024,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
center_crop = gr.Checkbox(label="Center Crop image", value=False, info="If not checked, the IP-Adapter image input would be resized to a square.")
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=2048,
# step=32,
# value=1024,
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=2048,
# step=32,
# value=1024,
# )
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=25,
)
gr.Examples(
examples=examples,
fn=predict,
inputs=[prompt, ip_adapter_image, ip_adapter_scale, width, height, seed, randomize_seed],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=predict,
inputs=[prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.queue(max_size=25,api_open=False).launch(show_api=False)
# image_blocks.queue(max_size=25,api_open=False).launch(show_api=False) |