Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,17 @@ import numpy as np
|
|
4 |
import diffusers
|
5 |
import os
|
6 |
import random
|
|
|
7 |
from PIL import Image
|
8 |
-
|
9 |
hf_token = os.environ.get("HF_TOKEN")
|
10 |
from diffusers import AutoPipelineForText2Image
|
11 |
|
12 |
-
|
|
|
13 |
pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device)
|
14 |
pipe.load_ip_adapter("briaai/Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin")
|
15 |
pipe.to(device)
|
|
|
16 |
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
|
@@ -20,19 +22,17 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
20 |
def predict(prompt, ip_adapter_images, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, center_crop=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
|
21 |
if randomize_seed:
|
22 |
seed = random.randint(0, MAX_SEED)
|
23 |
-
|
24 |
# Optionally resize images if center crop is not selected
|
25 |
if not center_crop:
|
26 |
ip_adapter_images = [image.resize((224, 224)) for image in ip_adapter_images]
|
27 |
|
28 |
-
# Create a generator for reproducible random seed
|
29 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
30 |
pipe.set_ip_adapter_scale([ip_adapter_scale])
|
31 |
|
32 |
-
|
33 |
-
result_images = pipe(
|
34 |
prompt=prompt,
|
35 |
-
ip_adapter_image=
|
36 |
negative_prompt=negative_prompt,
|
37 |
height=height,
|
38 |
width=width,
|
@@ -40,61 +40,135 @@ def predict(prompt, ip_adapter_images, ip_adapter_scale=0.5, negative_prompt="",
|
|
40 |
guidance_scale=guidance_scale,
|
41 |
num_images_per_prompt=1,
|
42 |
generator=generator,
|
43 |
-
).images
|
44 |
|
45 |
-
return
|
46 |
|
47 |
examples = [
|
48 |
-
["high quality",
|
|
|
49 |
]
|
50 |
|
51 |
-
css
|
52 |
#col-container {
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
}
|
58 |
"""
|
59 |
-
|
60 |
with gr.Blocks(css=css) as demo:
|
61 |
-
with gr.Column():
|
|
|
|
|
|
|
|
|
62 |
with gr.Row():
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Row():
|
75 |
-
|
76 |
-
label="
|
|
|
|
|
|
|
|
|
77 |
)
|
78 |
-
|
79 |
-
label="
|
|
|
|
|
|
|
|
|
80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
88 |
inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height, guidance_scale, num_inference_steps],
|
89 |
outputs=[result, seed]
|
90 |
)
|
91 |
|
92 |
-
|
93 |
-
examples=examples,
|
94 |
-
fn=predict,
|
95 |
-
inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height],
|
96 |
-
outputs=[result, seed],
|
97 |
-
cache_examples="lazy"
|
98 |
-
)
|
99 |
|
100 |
-
|
|
|
4 |
import diffusers
|
5 |
import os
|
6 |
import random
|
7 |
+
import spaces
|
8 |
from PIL import Image
|
|
|
9 |
hf_token = os.environ.get("HF_TOKEN")
|
10 |
from diffusers import AutoPipelineForText2Image
|
11 |
|
12 |
+
|
13 |
+
device = "cuda" #if torch.cuda.is_available() else "cpu"
|
14 |
pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device)
|
15 |
pipe.load_ip_adapter("briaai/Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin")
|
16 |
pipe.to(device)
|
17 |
+
# default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
|
|
|
22 |
def predict(prompt, ip_adapter_images, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, center_crop=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
+
|
26 |
# Optionally resize images if center crop is not selected
|
27 |
if not center_crop:
|
28 |
ip_adapter_images = [image.resize((224, 224)) for image in ip_adapter_images]
|
29 |
|
|
|
30 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
31 |
pipe.set_ip_adapter_scale([ip_adapter_scale])
|
32 |
|
33 |
+
image = pipe(
|
|
|
34 |
prompt=prompt,
|
35 |
+
ip_adapter_image=[ip_adapter_image],
|
36 |
negative_prompt=negative_prompt,
|
37 |
height=height,
|
38 |
width=width,
|
|
|
40 |
guidance_scale=guidance_scale,
|
41 |
num_images_per_prompt=1,
|
42 |
generator=generator,
|
43 |
+
).images[0]
|
44 |
|
45 |
+
return image, seed
|
46 |
|
47 |
examples = [
|
48 |
+
["high quality", "example1.png", 1.0, "", 1000, False, False, 1152, 896],
|
49 |
+
["capybara", "example2.png", 0.7, "", 1000, False, False, 1152, 896],
|
50 |
]
|
51 |
|
52 |
+
css="""
|
53 |
#col-container {
|
54 |
+
margin: 0 auto;
|
55 |
+
max-width: 1024px;
|
56 |
+
}
|
57 |
+
#result img{
|
58 |
+
object-position: top;
|
59 |
+
}
|
60 |
+
#result .image-container{
|
61 |
+
height: 100%
|
62 |
}
|
63 |
"""
|
|
|
64 |
with gr.Blocks(css=css) as demo:
|
65 |
+
with gr.Column(elem_id="col-container"):
|
66 |
+
gr.Markdown(f"""
|
67 |
+
# Bria's Image-Prompt-Adapter
|
68 |
+
""")
|
69 |
+
|
70 |
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
ip_adapter_images = gr.Gallery(label="Input Images", elem_id="image-gallery").style(grid=[2], preview=True)
|
73 |
+
ip_adapter_scale = gr.Slider(
|
74 |
+
label="Image Input Scale",
|
75 |
+
info="Use 1 for creating image variations",
|
76 |
+
minimum=0.0,
|
77 |
+
maximum=1.0,
|
78 |
+
step=0.05,
|
79 |
+
value=1.0,
|
80 |
+
)
|
81 |
+
with gr.Column():
|
82 |
+
result = gr.Image(label="Result", elem_id="result", format="png")
|
83 |
+
prompt = gr.Text(
|
84 |
+
label="Prompt",
|
85 |
+
show_label=True,
|
86 |
+
lines=1,
|
87 |
+
placeholder="Enter your prompt",
|
88 |
+
container=True,
|
89 |
+
info='For image variation, leave empty or try a prompt like: "high quality".'
|
90 |
+
)
|
91 |
+
|
92 |
with gr.Row():
|
93 |
+
width = gr.Slider(
|
94 |
+
label="Width",
|
95 |
+
minimum=256,
|
96 |
+
maximum=2048,
|
97 |
+
step=32,
|
98 |
+
value=1024,
|
99 |
)
|
100 |
+
height = gr.Slider(
|
101 |
+
label="Height",
|
102 |
+
minimum=256,
|
103 |
+
maximum=2048,
|
104 |
+
step=32,
|
105 |
+
value=1024,
|
106 |
)
|
107 |
+
run_button = gr.Button("Run", scale=0)
|
108 |
+
|
109 |
+
|
110 |
+
with gr.Accordion("Advanced Settings", open=False):
|
111 |
+
negative_prompt = gr.Text(
|
112 |
+
label="Negative prompt",
|
113 |
+
max_lines=1,
|
114 |
+
placeholder="Enter a negative prompt",
|
115 |
+
)
|
116 |
+
seed = gr.Slider(
|
117 |
+
label="Seed",
|
118 |
+
minimum=0,
|
119 |
+
maximum=MAX_SEED,
|
120 |
+
step=1,
|
121 |
+
value=1000,
|
122 |
+
)
|
123 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
124 |
+
center_crop = gr.Checkbox(label="Center Crop image", value=False, info="If not checked, the IP-Adapter image input would be resized to a square.")
|
125 |
+
# with gr.Row():
|
126 |
+
# width = gr.Slider(
|
127 |
+
# label="Width",
|
128 |
+
# minimum=256,
|
129 |
+
# maximum=2048,
|
130 |
+
# step=32,
|
131 |
+
# value=1024,
|
132 |
+
# )
|
133 |
+
# height = gr.Slider(
|
134 |
+
# label="Height",
|
135 |
+
# minimum=256,
|
136 |
+
# maximum=2048,
|
137 |
+
# step=32,
|
138 |
+
# value=1024,
|
139 |
+
# )
|
140 |
+
with gr.Row():
|
141 |
+
guidance_scale = gr.Slider(
|
142 |
+
label="Guidance scale",
|
143 |
+
minimum=0.0,
|
144 |
+
maximum=10.0,
|
145 |
+
step=0.1,
|
146 |
+
value=7.0,
|
147 |
+
)
|
148 |
+
num_inference_steps = gr.Slider(
|
149 |
+
label="Number of inference steps",
|
150 |
+
minimum=1,
|
151 |
+
maximum=100,
|
152 |
+
step=1,
|
153 |
+
value=25,
|
154 |
+
)
|
155 |
+
|
156 |
|
157 |
+
# gr.Examples(
|
158 |
+
# examples=examples,
|
159 |
+
# fn=predict,
|
160 |
+
# inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height],
|
161 |
+
# outputs=[result, seed],
|
162 |
+
# cache_examples="lazy"
|
163 |
+
# )
|
164 |
+
|
165 |
+
gr.on(
|
166 |
+
triggers=[run_button.click, prompt.submit],
|
167 |
+
fn=predict,
|
168 |
inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height, guidance_scale, num_inference_steps],
|
169 |
outputs=[result, seed]
|
170 |
)
|
171 |
|
172 |
+
demo.queue(max_size=25,api_open=False).launch(show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)
|