Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from llama_index import ( | |
ServiceContext, | |
SimpleDirectoryReader, | |
VectorStoreIndex, | |
) | |
# Import OpenAI only once, avoiding naming conflict | |
from openai import OpenAI as OpenAIClient | |
client = OpenAIClient(api_key=os.getenv("OPENAI_API_KEY")) | |
# Define Streamlit layout and interaction | |
st.title("Grounded Generations") | |
# Upload PDF | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
def load_data(uploaded_file): | |
with st.spinner('Indexing document...'): | |
# Save the uploaded file temporarily | |
with open("temp.pdf", "wb") as f: | |
f.write(uploaded_file.read()) | |
# Read and index documents using SimpleDirectoryReader | |
reader = SimpleDirectoryReader(input_dir="./", recursive=False) | |
docs = reader.load_data() | |
# The model configuration should be moved to where you actually call the OpenAI API | |
service_context = ServiceContext.from_defaults( | |
system_prompt="You are an AI assistant that uses context from a PDF to assist the user in generating text." | |
) | |
index = VectorStoreIndex.from_documents(docs, service_context=service_context) | |
return index | |
# Placeholder for document indexing | |
if uploaded_file is not None: | |
index = load_data(uploaded_file) | |
# Take user query input | |
user_query = st.text_input("Search for the products/info you want to use to ground your generated text content:") | |
# Initialize session_state for retrieved_text if not already present | |
if 'retrieved_text' not in st.session_state: | |
st.session_state['retrieved_text'] = '' | |
# Search and display retrieved text | |
if st.button("Retrieve"): | |
with st.spinner('Retrieving text...'): | |
# Use VectorStoreIndex to search | |
query_engine = index.as_query_engine(similarity_top_k=3) | |
st.session_state['retrieved_text'] = query_engine.query(user_query) | |
st.write(f"Retrieved Text: {st.session_state['retrieved_text']}") | |
# Select content type | |
content_type = st.selectbox("Select content type:", ["Blog", "Tweet"]) | |
# Generate text based on retrieved text and selected content type | |
if st.button("Generate") and content_type: | |
with st.spinner('Generating text...'): | |
try: | |
prompt = f"Write a blog about 500 words in length using {st.session_state['retrieved_text']}" if content_type == "Blog" else f"Compose a tweet using {st.session_state['retrieved_text']}" | |
response = client.chat.completions.create(model="gpt-3.5-turbo-16k", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
]) | |
generated_text = response.choices[0].message.content | |
st.write(f"Generated Text: {generated_text}") | |
except Exception as e: | |
st.write(f"An error occurred: {e}") | |