from diffusers import StableDiffusionPipeline from safetensors.torch import load_file import torch def load_pipeline(base_model_path, lora_path): # Load base SD-v1.5 pipeline pipeline = StableDiffusionPipeline.from_pretrained(base_model_path) # Load LoRA weights lora_state_dict = load_file(lora_path) pipeline.unet.load_attn_procs(lora_state_dict) return pipeline # Paths to the base model and LoRA weights base_model_path = "path/to/sd-v1-5" lora_path = "path/to/Floor_Plan_LoRA.safetensors" # Load the pipeline pipeline = load_pipeline(base_model_path, lora_path) def predict(prompt): # Generate an image based on the prompt result = pipeline(prompt).images[0] return result # Create Gradio Interface import gradio as gr interface = gr.Interface(fn=predict, inputs="text", outputs="image") interface.launch()