from huggingface_hub import hf_hub_download from diffusers import StableDiffusionPipeline from safetensors.torch import load_file import torch def load_pipeline(base_model_path, lora_repo_id, lora_filename): # Load base SD-v1.5 pipeline pipeline = StableDiffusionPipeline.from_pretrained(base_model_path) # Download the LoRA file lora_path = hf_hub_download(repo_id=lora_repo_id, filename=lora_filename) # Load LoRA weights lora_state_dict = load_file(lora_path) pipeline.unet.load_attn_procs(lora_state_dict) return pipeline # Define parameters base_model_path = "runwayml/stable-diffusion-v1-5" lora_repo_id = "maria26/Floor_Plan_LoRA" lora_filename = "model.safetensors" # Load the pipeline pipeline = load_pipeline(base_model_path, lora_repo_id, lora_filename) def predict(prompt): result = pipeline(prompt).images[0] return result