Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) | |
import torch | |
import numpy as np | |
import gradio as gr | |
import spaces | |
from PIL import Image | |
from diffusers import DDPMScheduler | |
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler | |
from module.ip_adapter.utils import load_adapter_to_pipe | |
from pipelines.sdxl_instantir import InstantIRPipeline | |
def resize_img(input_image, max_side=1280, min_side=1024, size=None, | |
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
w, h = input_image.size | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
# ratio = min_side / min(h, w) | |
# w, h = round(ratio*w), round(ratio*h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
from huggingface_hub import hf_hub_download | |
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".") | |
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir=".") | |
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir=".") | |
instantir_path = f'./models' | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
dinov2_repo_id = "facebook/dinov2-large" | |
lcm_repo_id = "latent-consistency/lcm-lora-sdxl" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
# Load pretrained models. | |
print("Initializing pipeline...") | |
pipe = InstantIRPipeline.from_pretrained( | |
sdxl_repo_id, | |
torch_dtype=torch_dtype, | |
) | |
# Image prompt projector. | |
print("Loading LQ-Adapter...") | |
load_adapter_to_pipe( | |
pipe, | |
f"{instantir_path}/adapter.pt", | |
dinov2_repo_id, | |
) | |
# Prepare previewer | |
lora_alpha = pipe.prepare_previewers(instantir_path) | |
print(f"use lora alpha {lora_alpha}") | |
lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True) | |
print(f"use lora alpha {lora_alpha}") | |
pipe.to(device=device, dtype=torch_dtype) | |
pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler") | |
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) | |
# Load weights. | |
print("Loading checkpoint...") | |
aggregator_state_dict = torch.load( | |
f"{instantir_path}/aggregator.pt", | |
map_location="cpu" | |
) | |
pipe.aggregator.load_state_dict(aggregator_state_dict, strict=True) | |
pipe.aggregator.to(device=device, dtype=torch_dtype) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
PROMPT = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \ | |
ultra HD, extreme meticulous detailing, skin pore detailing, \ | |
hyper sharpness, perfect without deformations, \ | |
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. " | |
NEG_PROMPT = "blurry, out of focus, unclear, depth of field, over-smooth, \ | |
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \ | |
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \ | |
watermark, signature, jpeg artifacts, deformed, lowres" | |
def unpack_pipe_out(preview_row, index): | |
return preview_row[index][0] | |
def dynamic_preview_slider(sampling_steps): | |
print(sampling_steps) | |
return gr.Slider(label="Restoration Previews", value=sampling_steps-1, minimum=0, maximum=sampling_steps-1, step=1) | |
def dynamic_guidance_slider(sampling_steps): | |
return gr.Slider(label="Start Free Rendering", value=sampling_steps, minimum=0, maximum=sampling_steps, step=1) | |
def show_final_preview(preview_row): | |
return preview_row[-1][0] | |
#[uncomment to use ZeroGPU] | |
def instantir_restore( | |
lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0, | |
creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0): | |
if creative_restoration: | |
if "lcm" not in pipe.unet.active_adapters(): | |
pipe.unet.set_adapter('lcm') | |
else: | |
if "previewer" not in pipe.unet.active_adapters(): | |
pipe.unet.set_adapter('previewer') | |
if isinstance(guidance_end, int): | |
guidance_end = guidance_end / steps | |
elif guidance_end > 1.0: | |
guidance_end = guidance_end / steps | |
if isinstance(preview_start, int): | |
preview_start = preview_start / steps | |
elif preview_start > 1.0: | |
preview_start = preview_start / steps | |
lq = [resize_img(lq.convert("RGB"), size=(width, height))] | |
generator = torch.Generator(device=device).manual_seed(seed) | |
timesteps = [ | |
i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps) | |
] | |
timesteps = timesteps[::-1] | |
prompt = PROMPT if len(prompt)==0 else prompt | |
neg_prompt = NEG_PROMPT | |
out = pipe( | |
prompt=[prompt]*len(lq), | |
image=lq, | |
num_inference_steps=steps, | |
generator=generator, | |
timesteps=timesteps, | |
negative_prompt=[neg_prompt]*len(lq), | |
guidance_scale=cfg_scale, | |
control_guidance_end=guidance_end, | |
preview_start=preview_start, | |
previewer_scheduler=lcm_scheduler, | |
return_dict=False, | |
save_preview_row=True, | |
) | |
for i, preview_img in enumerate(out[1]): | |
preview_img.append(f"preview_{i}") | |
return out[0][0], out[1] | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# InstantIR: Blind Image Restoration with Instant Generative Reference. | |
### **Official 🤗 Gradio demo of [InstantIR](https://arxiv.org/abs/2410.06551).** | |
### **InstantIR can not only help you restore your broken image, but also capable of imaginative re-creation following your text prompts. See advance usage for more details!** | |
## Basic usage: revitalize your image | |
1. Upload an image you want to restore; | |
2. Optionally, tune the `Steps` `CFG Scale` parameters. Typically higher steps lead to better results, but less than 50 is recommended for efficiency; | |
3. Click `InstantIR magic!`. | |
""") | |
with gr.Row(): | |
lq_img = gr.Image(label="Low-quality image", type="pil") | |
with gr.Column(): | |
with gr.Row(): | |
steps = gr.Number(label="Steps", value=30, step=1) | |
cfg_scale = gr.Number(label="CFG Scale", value=7.0, step=0.1) | |
with gr.Row(): | |
height = gr.Number(label="Height", value=1024, step=1) | |
weight = gr.Number(label="Weight", value=1024, step=1) | |
seed = gr.Number(label="Seed", value=42, step=1) | |
# guidance_start = gr.Slider(label="Guidance Start", value=1.0, minimum=0.0, maximum=1.0, step=0.05) | |
guidance_end = gr.Slider(label="Start Free Rendering", value=30, minimum=0, maximum=30, step=1) | |
preview_start = gr.Slider(label="Preview Start", value=0, minimum=0, maximum=30, step=1) | |
prompt = gr.Textbox(label="Restoration prompts (Optional)", placeholder="") | |
mode = gr.Checkbox(label="Creative Restoration", value=False) | |
with gr.Row(): | |
with gr.Row(): | |
restore_btn = gr.Button("InstantIR magic!") | |
clear_btn = gr.ClearButton() | |
index = gr.Slider(label="Restoration Previews", value=29, minimum=0, maximum=29, step=1) | |
with gr.Row(): | |
output = gr.Image(label="InstantIR restored", type="pil") | |
preview = gr.Image(label="Preview", type="pil") | |
pipe_out = gr.Gallery(visible=False) | |
clear_btn.add([lq_img, output, preview]) | |
restore_btn.click( | |
instantir_restore, inputs=[ | |
lq_img, prompt, steps, cfg_scale, guidance_end, | |
mode, seed, height, weight, preview_start, | |
], | |
outputs=[output, pipe_out], api_name="InstantIR" | |
) | |
steps.change(dynamic_guidance_slider, inputs=steps, outputs=guidance_end) | |
output.change(dynamic_preview_slider, inputs=steps, outputs=index) | |
index.release(unpack_pipe_out, inputs=[pipe_out, index], outputs=preview) | |
output.change(show_final_preview, inputs=pipe_out, outputs=preview) | |
gr.Markdown( | |
""" | |
## Advance usage: | |
### Browse restoration variants: | |
1. After InstantIR processing, drag the `Restoration Previews` slider to explore other in-progress versions; | |
2. If you like one of them, set the `Start Free Rendering` slider to the same value to get a more refined result. | |
### Creative restoration: | |
1. Check the `Creative Restoration` checkbox; | |
2. Input your text prompts in the `Restoration prompts` textbox; | |
3. Set `Start Free Rendering` slider to a medium value (around half of the `steps`) to provide adequate room for InstantIR creation. | |
## Examples | |
Here are some examplar usage of InstantIR: | |
""") | |
# examples = gr.Gallery(label="Examples") | |
gr.Markdown( | |
""" | |
## Citation | |
If InstantIR is helpful to your work, please cite our paper via: | |
``` | |
@article{huang2024instantir, | |
title={InstantIR: Blind Image Restoration with Instant Generative Reference}, | |
author={Huang, Jen-Yuan and Wang, Haofan and Wang, Qixun and Bai, Xu and Ai, Hao and Xing, Peng and Huang, Jen-Tse}, | |
journal={arXiv preprint arXiv:2410.06551}, | |
year={2024} | |
} | |
``` | |
""") | |
demo.queue().launch() |