Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,956 Bytes
a72119e 496112d a2b9299 496112d 8365126 a72119e 0af2d38 a72119e 22b8c91 a72119e a2b9299 22b8c91 262a1a2 a72119e 1f22cbc f1c7671 de54836 55e1949 a2b9299 262a1a2 6785fcb a2b9299 55e1949 a2b9299 45471c4 a2b9299 262a1a2 a2b9299 262a1a2 55e1949 262a1a2 a2b9299 262a1a2 fb480c5 262a1a2 a2b9299 f1c7671 262a1a2 a2b9299 262a1a2 a2b9299 6785fcb a2b9299 0bc476b 262a1a2 a2b9299 262a1a2 a2b9299 262a1a2 a2b9299 262a1a2 55e1949 6d754a8 6785fcb fb480c5 a2b9299 fb480c5 a2b9299 fb480c5 a2b9299 fb480c5 a2b9299 fb480c5 a2b9299 fb480c5 a2b9299 fb480c5 6785fcb 5d2dafa 22b8c91 4902bd9 70e42a3 b1d6fce d3daa33 402afc5 4902bd9 d3daa33 402afc5 d3daa33 402afc5 55e1949 402afc5 d3daa33 55e1949 d3daa33 55e1949 d3daa33 55e1949 d3daa33 55e1949 1b81f82 55e1949 1f22cbc d3daa33 26a50b2 b8c17c8 2189235 d3daa33 55e1949 1f22cbc 2189235 d3daa33 a72119e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
torch.set_float32_matmul_precision("medium")
device = "cuda" if torch.cuda.is_available() else "cpu"
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
try:
# Load the video using moviepy
video = mp.VideoFileClip(vid)
# Load original fps if fps value is equal to 0
if fps == 0:
fps = video.fps
# Extract audio from the video
audio = video.audio
# Extract frames at the specified FPS
frames = video.iter_frames(fps=fps)
# Process each frame for background removal
processed_frames = []
yield gr.update(visible=True), gr.update(visible=False)
if bg_type == "Video":
background_video = mp.VideoFileClip(bg_video)
if background_video.duration < video.duration:
if video_handling == "slow_down":
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
else: # video_handling == "loop"
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
background_frames = list(background_video.iter_frames(fps=fps)) # Convert to list
else:
background_frames = None
bg_frame_index = 0 # Initialize background frame index
for i, frame in enumerate(frames):
pil_image = Image.fromarray(frame)
if bg_type == "Color":
processed_image = process(pil_image, color)
elif bg_type == "Image":
processed_image = process(pil_image, bg_image)
elif bg_type == "Video":
if video_handling == "slow_down":
background_frame = background_frames[bg_frame_index % len(background_frames)]
bg_frame_index += 1
background_image = Image.fromarray(background_frame)
processed_image = process(pil_image, background_image)
else: # video_handling == "loop"
background_frame = background_frames[bg_frame_index % len(background_frames)]
bg_frame_index += 1
background_image = Image.fromarray(background_frame)
processed_image = process(pil_image, background_image)
else:
processed_image = pil_image # Default to original image if no background is selected
processed_frames.append(np.array(processed_image))
yield processed_image, None
# Create a new video from the processed frames
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
# Add the original audio back to the processed video
processed_video = processed_video.set_audio(audio)
# Save the processed video to a temporary file
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
unique_filename = str(uuid.uuid4()) + ".mp4"
temp_filepath = os.path.join(temp_dir, unique_filename)
processed_video.write_videofile(temp_filepath, codec="libx264")
yield gr.update(visible=False), gr.update(visible=True)
# Return the path to the temporary file
yield processed_image, temp_filepath
except Exception as e:
print(f"Error: {e}")
yield gr.update(visible=False), gr.update(visible=True)
yield None, f"Error processing video: {e}"
def process(image, bg):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
if isinstance(bg, str) and bg.startswith("#"):
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
background = Image.new("RGBA", image_size, color_rgb + (255,))
elif isinstance(bg, Image.Image):
background = bg.convert("RGBA").resize(image_size)
else:
background = Image.open(bg).convert("RGBA").resize(image_size)
# Composite the image onto the background using the mask
image = Image.composite(image, background, mask)
return image
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200frmaes at once. So, if you have big video than use small chunks or Duplicate this space.")
with gr.Row():
in_video = gr.Video(label="Input Video", interactive=True)
stream_image = gr.Image(label="Streaming Output", visible=False)
out_video = gr.Video(label="Final Output Video")
submit_button = gr.Button("Change Background", interactive=True)
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
interactive=True
)
bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
with gr.Column(visible=False) as video_handling_options:
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)
def update_visibility(bg_type):
if bg_type == "Color":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif bg_type == "Image":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif bg_type == "Video":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])
examples = gr.Examples(
[
["rickroll-2sec.mp4", "Video", None, "background.mp4"],
["rickroll-2sec.mp4", "Image", "images.webp", None],
["rickroll-2sec.mp4", "Color", None, None],
],
inputs=[in_video, bg_type, bg_image, bg_video],
outputs=[stream_image, out_video],
fn=fn,
cache_examples=True,
cache_mode="eager",
)
submit_button.click(
fn,
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio],
outputs=[stream_image, out_video],
)
if __name__ == "__main__":
demo.launch(show_error=True) |