Spaces:
Runtime error
Runtime error
File size: 1,375 Bytes
ac55eb6 3f5b34b ac55eb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# -*- coding: utf-8 -*-
"""app
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/13flhQBX2Or3viw58aoZy6hDffoN36uWu
"""
import gradio as gr
import numpy as np
import tensorflow_hub as hub
from tensorflow.keras.models import load_model
import cv2
# Define a dictionary to map the custom layer to its implementation
custom_objects = {'KerasLayer': hub.KerasLayer}
# Load your model (ensure the path is correct)
model = load_model('bird_model.h5', custom_objects=custom_objects)
# Define your class labels or categories for predictions
train_info = [] # Replace with your actual class labels
# Read image names from the text file
with open('label.txt', 'r') as file:
train_info = [line.strip() for line in file.read().splitlines()]
def predict_image(image):
img = cv2.resize(image, (224, 224))
img = img / 255.0
predictions = model.predict(img[np.newaxis, ...])[0]
top_classes = np.argsort(predictions)[-3:][::-1]
top_class = top_classes[0] # Get the index of the top prediction
label = train_info[top_class] # Use the index to retrieve the label
return label
# Define Gradio interface
input_image = gr.inputs.Image(shape=(224, 224))
output_label = gr.outputs.Label()
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch() |