File size: 1,375 Bytes
ac55eb6
3f5b34b
 
 
 
 
ac55eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# -*- coding: utf-8 -*-
"""app
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/13flhQBX2Or3viw58aoZy6hDffoN36uWu
"""

import gradio as gr
import numpy as np
import tensorflow_hub as hub
from tensorflow.keras.models import load_model
import cv2

# Define a dictionary to map the custom layer to its implementation
custom_objects = {'KerasLayer': hub.KerasLayer}

# Load your model (ensure the path is correct)
model = load_model('bird_model.h5', custom_objects=custom_objects)

# Define your class labels or categories for predictions
train_info = []  # Replace with your actual class labels

# Read image names from the text file
with open('label.txt', 'r') as file:
    train_info = [line.strip() for line in file.read().splitlines()]


def predict_image(image):
    img = cv2.resize(image, (224, 224))
    img = img / 255.0
    predictions = model.predict(img[np.newaxis, ...])[0]
    top_classes = np.argsort(predictions)[-3:][::-1]
    top_class = top_classes[0]  # Get the index of the top prediction
    label = train_info[top_class]  # Use the index to retrieve the label
    return label


# Define Gradio interface
input_image = gr.inputs.Image(shape=(224, 224))
output_label = gr.outputs.Label()

gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch()