Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
import gradio as gr | |
import numpy as np | |
import tensorflow_hub as hub | |
from tensorflow.keras.models import load_model | |
import cv2 | |
# Define a dictionary to map the custom layer to its implementation | |
custom_objects = {'KerasLayer': hub.KerasLayer} | |
# Load your model (ensure the path is correct) | |
model = load_model('bird_model.h5', custom_objects=custom_objects) | |
# Define your class labels or categories for predictions | |
train_info = [] # Replace with your actual class labels | |
# Read image names from the text file | |
with open('label.txt', 'r') as file: | |
train_info = [line.strip() for line in file.read().splitlines()] | |
def predict_image(image): | |
img = cv2.resize(image, (224, 224)) | |
img = img / 255.0 | |
predictions = model.predict(img[np.newaxis, ...])[0] | |
top_classes = np.argsort(predictions)[-3:][::-1] | |
top_class = top_classes[0] # Get the index of the top prediction | |
label = train_info[top_class] # Use the index to retrieve the label | |
return label | |
# Define Gradio interface | |
input_image = gr.inputs.Image(shape=(224, 224)) | |
output_label = gr.outputs.Label() | |
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch() |