Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,36 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
-
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
|
|
6 |
import tensorflow_hub as hub
|
7 |
-
from tensorflow.keras.models import load_model
|
8 |
import cv2
|
9 |
|
10 |
# Define a dictionary to map the custom layer to its implementation
|
11 |
custom_objects = {'KerasLayer': hub.KerasLayer}
|
12 |
|
13 |
-
# Load your model (ensure the path is correct)
|
14 |
-
model = load_model('bird_model4.h5', custom_objects=custom_objects)
|
15 |
-
|
16 |
-
# Define your class labels or categories for predictions
|
17 |
-
train_info = [] # Replace with your actual class labels
|
18 |
|
19 |
-
#
|
|
|
20 |
with open('labelwithspace.txt', 'r') as file:
|
21 |
-
train_info = [line.strip() for line in file.
|
22 |
-
|
23 |
|
|
|
24 |
def predict_image(image):
|
|
|
25 |
img = cv2.resize(image, (224, 224))
|
26 |
-
img = img / 255.0
|
|
|
27 |
predictions = model.predict(img[np.newaxis, ...])[0]
|
28 |
-
top_classes = np.argsort(predictions)[-3:][::-1]
|
29 |
-
top_class = top_classes[0] #
|
30 |
-
label = train_info[top_class] #
|
31 |
return label
|
32 |
|
33 |
-
|
34 |
-
# Define Gradio interface
|
35 |
input_image = gr.inputs.Image(shape=(224, 224))
|
36 |
output_label = gr.outputs.Label()
|
37 |
|
38 |
-
|
|
|
|
1 |
# -*- coding: utf-8 -*-
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
import tensorflow_hub as hub
|
|
|
6 |
import cv2
|
7 |
|
8 |
# Define a dictionary to map the custom layer to its implementation
|
9 |
custom_objects = {'KerasLayer': hub.KerasLayer}
|
10 |
|
11 |
+
# Load your model (ensure the path to the model file is correct)
|
12 |
+
model = tf.keras.models.load_model('bird_model4.h5', custom_objects=custom_objects)
|
|
|
|
|
|
|
13 |
|
14 |
+
# Load the class labels from the text file
|
15 |
+
train_info = []
|
16 |
with open('labelwithspace.txt', 'r') as file:
|
17 |
+
train_info = [line.strip() for line in file.readlines()]
|
|
|
18 |
|
19 |
+
# Function to preprocess the image and make predictions
|
20 |
def predict_image(image):
|
21 |
+
# Resize the image to the model's input size
|
22 |
img = cv2.resize(image, (224, 224))
|
23 |
+
img = img / 255.0 # Normalize the image
|
24 |
+
# Make predictions using the model
|
25 |
predictions = model.predict(img[np.newaxis, ...])[0]
|
26 |
+
top_classes = np.argsort(predictions)[-3:][::-1] # Get indices of top 3 predictions
|
27 |
+
top_class = top_classes[0] # Index of the top prediction
|
28 |
+
label = train_info[top_class] # Retrieve the label using the index
|
29 |
return label
|
30 |
|
31 |
+
# Define the Gradio interface
|
|
|
32 |
input_image = gr.inputs.Image(shape=(224, 224))
|
33 |
output_label = gr.outputs.Label()
|
34 |
|
35 |
+
# Launch the Gradio app
|
36 |
+
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch()
|