anti-spoofing / anti_spoofing.py
brxerq's picture
Upload 12 files
b831807 verified
# Import all the libraries
import cv2
import dlib
import numpy as np
import os
import time
import mediapipe as mp
from skimage import feature
# I'm setting up the face and hand detectors here.
class AntiSpoofingSystem:
def __init__(self):
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# Here I initialize MediaPipe for hand gesture detection.
self.mp_hands = mp.solutions.hands
self.hands = self.mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.7)
# This code is for Webcam if you have Jetson kit change value from 0 to 1.
self.cap = cv2.VideoCapture(0)
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
# I create a directory to save the captured images if it doesn't exist.
self.save_directory = "Person"
if not os.path.exists(self.save_directory):
os.makedirs(self.save_directory)
# Iam loading the Pre-trained model to detect smartphones.
self.net_smartphone = cv2.dnn.readNet('yolov4.weights', 'PreTrained_yolov4.cfg')
with open('PreTrained_coco.names', 'r') as f:
self.classes_smartphone = f.read().strip().split('\n')
# Setting some thresholds for eye aspect ratio to detect blinks.
self.EAR_THRESHOLD = 0.2
self.BLINK_CONSEC_FRAMES = 4
# Initializing some variables to keep track of eye states and blink counts.
self.left_eye_state = False
self.right_eye_state = False
self.left_blink_counter = 0
self.right_blink_counter = 0
# Variables to manage smartphone detection.
self.smartphone_detected = False
self.smartphone_detection_frame_interval = 10
self.frame_count = 0
# New attributes for student data
self.student_id = None
self.student_name = None
# It is calculating the eye aspect ratio to detect blinks.
def calculate_ear(self, eye):
A = np.linalg.norm(eye[1] - eye[5])
B = np.linalg.norm(eye[2] - eye[4])
C = np.linalg.norm(eye[0] - eye[3])
return (A + B) / (2.0 * C)
# Analyzing the texture of the face to check for liveness.
def analyze_texture(self, face_region):
gray_face = cv2.cvtColor(face_region, cv2.COLOR_BGR2GRAY)
lbp = feature.local_binary_pattern(gray_face, P=8, R=1, method="uniform")
lbp_hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, 58), range=(0, 58))
lbp_hist = lbp_hist.astype("float")
lbp_hist /= (lbp_hist.sum() + 1e-5)
return np.sum(lbp_hist[:10]) > 0.3
# Detecting hand using MediaPipe.
def detect_hand_gesture(self, frame):
results = self.hands.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return results.multi_hand_landmarks is not None
# Detecting smartphones in the frame to prevent System Bypass.
def detect_smartphone(self, frame):
if self.frame_count % self.smartphone_detection_frame_interval == 0:
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (224, 224), swapRB=True, crop=False)
self.net_smartphone.setInput(blob)
output_layers_names = self.net_smartphone.getUnconnectedOutLayersNames()
detections = self.net_smartphone.forward(output_layers_names)
for detection in detections:
for obj in detection:
scores = obj[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.3 and self.classes_smartphone[class_id] == 'cell phone':
center_x = int(obj[0] * frame.shape[1])
center_y = int(obj[1] * frame.shape[0])
width = int(obj[2] * frame.shape[1])
height = int(obj[3] * frame.shape[0])
left = int(center_x - width / 2)
top = int(center_y - height / 2)
cv2.rectangle(frame, (left, top), (left + width, top + height), (0, 0, 255), 2)
cv2.putText(frame, 'Smartphone Detected', (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
self.smartphone_detected = True
self.left_blink_counter = 0
self.right_blink_counter = 0
return
self.frame_count += 1
self.smartphone_detected = False
# Checking if the user blinked to confirm their presence.
def detect_blink(self, left_ear, right_ear):
if self.smartphone_detected:
self.left_eye_state = False
self.right_eye_state = False
self.left_blink_counter = 0
self.right_blink_counter = 0
return False
# Incrementing blink counter if a blink is detected.
if left_ear < self.EAR_THRESHOLD:
if not self.left_eye_state:
self.left_eye_state = True
else:
if self.left_eye_state:
self.left_eye_state = False
self.left_blink_counter += 1
if right_ear < self.EAR_THRESHOLD:
if not self.right_eye_state:
self.right_eye_state = True
else:
if self.right_eye_state:
self.right_eye_state = False
self.right_blink_counter += 1
# Resetting blink counters after a successful blink detection.
if self.left_blink_counter > 0 and self.right_blink_counter > 0:
self.left_blink_counter = 0
self.right_blink_counter = 0
return True
else:
return False
# Main loop to process the video feed.
def run(self, update_frame_callback=None):
blink_count = 0
hand_gesture_detected = False
image_captured = False
last_event_time = time.time()
event_timeout = 60
message_displayed = False
while True:
ret, frame = self.cap.read()
if not ret:
break
# Detecting smartphones in the frame.
self.detect_smartphone(frame)
# Displaying a warning if a smartphone is detected.
if self.smartphone_detected:
cv2.putText(frame, "Mobile phone detected, can't record attendance", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
blink_count = 0
# Processing each frame to detect faces, blinks, and hand gestures.
if not self.smartphone_detected:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.detector(gray)
for face in faces:
landmarks = self.predictor(gray, face)
leftEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)])
rightEye = np.array([(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)])
ear_left = self.calculate_ear(leftEye)
ear_right = self.calculate_ear(rightEye)
if self.detect_blink(ear_left, ear_right):
blink_count += 1
# Prionting and Incrementing blink Count
cv2.putText(frame, f"Blink Count: {blink_count}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
hand_gesture_detected = self.detect_hand_gesture(frame)
# Indicating when a hand gesture is detected.
if hand_gesture_detected:
cv2.putText(frame, "Hand Gesture Detected", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
(x, y, w, h) = (face.left(), face.top(), face.width(), face.height())
expanded_region = frame[max(y - h // 2, 0):min(y + 3 * h // 2, frame.shape[0]),
max(x - w // 2, 0):min(x + 3 * w // 2, frame.shape[1])]
# Checking if the conditions are met to capture the image.
if blink_count >= 5 and hand_gesture_detected and self.analyze_texture(expanded_region) and not message_displayed:
cv2.putText(frame, "Please hold still for 2 seconds...", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imshow("Frame", frame)
cv2.waitKey(1)
time.sleep(2)
message_displayed = True
if message_displayed and not image_captured:
timestamp = int(time.time())
picture_name = f"{self.student_id}_{timestamp}.jpg"
cv2.imwrite(os.path.join(self.save_directory, picture_name), expanded_region)
image_captured = True
if update_frame_callback:
update_frame_callback(frame)
cv2.imshow("Frame", frame)
if image_captured or (time.time() - last_event_time > event_timeout and not hand_gesture_detected):
break
if cv2.waitKey(1) & 0xFF == ord('q'):
break
self.cap.release()
cv2.destroyAllWindows()
#If person if real and did all the required features then his attendance will be marked if not then it will print no person detected.
if image_captured:
print(f"Person detected. Face image captured and saved as {picture_name}.")
elif not hand_gesture_detected:
print("No real person detected")
if __name__ == "__main__":
anti_spoofing_system = AntiSpoofingSystem()
anti_spoofing_system.run()