import jmespath import asyncio import json from urllib.parse import urlencode from typing import List, Dict from httpx import AsyncClient, Response from loguru import logger as log import torch import torch.nn as nn from transformers import AutoModel from transformers import AutoTokenizer, AutoModelForSequenceClassification import gradio as gr client = AsyncClient( # enable http2 http2=True, headers={ "Accept-Language": "en-US,en;q=0.9", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, br", "content-type": "application/json" }, ) def parse_comments(response: Response) -> Dict: try: data = json.loads(response.text) except json.JSONDecodeError: log.error(f"Failed to parse JSON response: {response.text}") return {"comments": [], "total_comments": 0} comments_data = data.get("comments", []) total_comments = data.get("total", 0) if not comments_data: log.warning(f"No comments found in response: {response.text}") return {"comments": [], "total_comments": total_comments} parsed_comments = [] for comment in comments_data: result = jmespath.search( """{ text: text }""", comment ) parsed_comments.append(result) return {"comments": parsed_comments, "total_comments": total_comments} async def scrape_comments(post_id: int, comments_count: int = 20, max_comments: int = None) -> List[Dict]: def form_api_url(cursor: int): base_url = "https://www.tiktok.com/api/comment/list/?" params = { "aweme_id": post_id, 'count': comments_count, 'cursor': cursor # the index to start from } return base_url + urlencode(params) log.info(f"Scraping comments from post ID: {post_id}") first_page = await client.get(form_api_url(0)) data = parse_comments(first_page) comments_data = data["comments"] total_comments = data["total_comments"] if not comments_data: log.warning(f"No comments found for post ID {post_id}") return [] if max_comments and max_comments < total_comments: total_comments = max_comments log.info(f"Scraping comments pagination, remaining {total_comments // comments_count - 1} more pages") _other_pages = [ client.get(form_api_url(cursor=cursor)) for cursor in range(comments_count, total_comments + comments_count, comments_count) ] for response in asyncio.as_completed(_other_pages): response = await response new_comments = parse_comments(response)["comments"] comments_data.extend(new_comments) # If we have reached or exceeded the maximum number of comments to scrape, stop the process if max_comments and len(comments_data) >= max_comments: comments_data = comments_data[:max_comments] break log.success(f"Scraped {len(comments_data)} comments from post ID {post_id}") return comments_data class SentimentClassifier(nn.Module): def __init__(self, n_classes): super(SentimentClassifier, self).__init__() self.bert = AutoModel.from_pretrained("vinai/phobert-base") self.drop = nn.Dropout(p=0.3) self.fc = nn.Linear(self.bert.config.hidden_size, n_classes) nn.init.normal_(self.fc.weight, std=0.02) nn.init.normal_(self.fc.bias, 0) def forward(self, input_ids, attention_mask): last_hidden_state, output = self.bert( input_ids=input_ids, attention_mask=attention_mask, return_dict=False # Dropout will errors if without this ) x = self.drop(output) x = self.fc(x) return x def infer(text, tokenizer, max_len=120): encoded_review = tokenizer.encode_plus( text, max_length=max_len, truncation=True, add_special_tokens=True, padding='max_length', return_attention_mask=True, return_token_type_ids=False, return_tensors='pt', ) input_ids = encoded_review['input_ids'].to(device) attention_mask = encoded_review['attention_mask'].to(device) output = model(input_ids, attention_mask) _, y_pred = torch.max(output, dim=1) return class_names[y_pred] async def predict_comments(video_id): comments = await scrape_comments( post_id=int(video_id), max_comments=2000, comments_count=20 ) predictions = [] for comment in comments: text = comment['text'] probs = infer(text, tokenizer) predictions.append({'comment': text, 'predictions': probs}) # Tính toán tỷ lệ phần trăm của mỗi nhãn total_comments = len(predictions) label_counts = [0, 0, 0] # Assuming there are 3 labels comment_off = [] comment_hate = [] for prediction in predictions: probs = prediction['predictions'] if probs == 'CLEAN': label_counts[0] += 1 elif probs == 'OFFENSIVE': label_counts[1] += 1 comment_off.append(prediction['comment']) else : label_counts[2] += 1 comment_hate.append(prediction['comment']) label_percentages = [count / total_comments * 100 for count in label_counts] results = { 'total_comments': total_comments, 'label_percentages': { 'CLEAN': label_percentages[0], 'OFFENSIVE': label_percentages[1], 'HATE': label_percentages[2], 'CMT OFFENSIVE': comment_off, 'CMT HATE': comment_hate, } } return results device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = SentimentClassifier(n_classes=3) model.to(device) model.load_state_dict(torch.load('phobert_fold1.pth')) tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base") class_names = ['CLEAN', 'OFFENSIVE', 'HATE'] iface = gr.Interface( fn=predict_comments, inputs="text", outputs="json" ) iface.launch()