File size: 13,398 Bytes
06773c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 26 17:38:54 2022

@author: bullm
"""

import streamlit as st
from modules import tables
import pandas as pd
from streamlit_echarts import st_echarts
from Data.credentials import credentials_s3 as creds3
import boto3
import io
import pybase64 as base64
import matplotlib.pyplot as plt


@st.experimental_memo
def get_asset_field(id_quant, start, field='IQ_CLOSEPRICE_ADJ', expand=True,
                    rename=['asset']):
    asset_obj = tables.EquityMaster(asset=id_quant, field=field)
    asset_df = asset_obj.query(rename=rename, start=start, expand=expand)
    return pd.DataFrame(asset_df)


@st.experimental_memo
def get_macro_field(country, start, instrument="INDEX", expand=True,
                    rename=['country']):
    asset_obj = tables.MacroMaster(country=country, instrument=instrument)
    asset_df = asset_obj.query(rename=rename, start=start, expand=expand)
    return pd.DataFrame(asset_df)


def plot_returns(id_quant, country, start):
    asset_df = get_asset_field(id_quant, start)
    index_df = get_macro_field(country, start)
    asset_df = asset_df.merge(index_df, how='left',
                              left_index=True,
                              right_index=True)
    x = asset_df.index
    y2 = asset_df[id_quant]/asset_df.iloc[0][id_quant] - 1
    y1= (1 + asset_df[country]).cumprod() - 1
    plt.figure(figsize=(10, 5))
    plt.rcParams['axes.facecolor'] = '#EAEAEA'
    plt.rcParams['figure.facecolor'] = '#EAEAEA'
    plt.fill_between(x, y1, y2, where=y2 >y1, facecolor='green', alpha=0.5)
    plt.fill_between(x, y1, y2, where=y2 <=y1, facecolor='red', alpha=0.5)
    plt.xticks(rotation=60)
    plt.title('Asset vs Benchmark')
    st.pyplot(plt, height='300')


def get_ebitda(id_quant):
    ebitda_df = get_asset_field(id_quant, '2021-01-01', field='IQ_EBITDA', expand=True,
                    rename=['asset'])
    ebitda_actual = round(ebitda_df.iloc[-1][id_quant], 2)
    ebitda_anterior =  round(ebitda_df.iloc[-2][id_quant], 2)
    delta = round(ebitda_actual - ebitda_anterior,2)
    st.metric("Ebitda " + ebitda_df.index[-1].strftime("%Y-%m-%d"), ebitda_actual, delta)










@st.experimental_memo
def get_asset_field(id_quant, field, start, expand=False, rename=['asset', 'field']):
    asset_obj = tables.EquityMaster(asset=id_quant, field=field)
    asset_df = asset_obj.query(rename=rename, start=start, expand=expand)
    return pd.DataFrame(asset_df)

@st.experimental_memo
def get_macro_field(country, instrument, start, expand=True, rename=['country']):
    asset_obj = tables.MacroMaster(country=country, instrument=instrument)
    asset_df = asset_obj.query(rename=rename, start=start, expand=expand)
    return pd.DataFrame(asset_df)

def get_dict_companies():
    company_base_df = pd.read_excel("Data/Company_Base_Definitivo.xlsx",
                                    sheet_name='Compilado')
    company_id_dict = dict(zip(company_base_df["Ticker"], company_base_df["ID_Quant"]))
    return company_id_dict
    # asset = data_daily[field][id_quant]

def read_itub():
    itub_df = pd.read_csv('C:/Users/bullm/Desktop/ITUB.csv')
    itub_df.index = pd.to_datetime(itub_df["Date"])
    itub_cs_s = itub_df["Adj Close"]
    st.line_chart(itub_cs_s)


def company_info():
    st.set_page_config(layout="wide", page_title="Portal LVAM",
                       page_icon="img/icono.png")
    st.sidebar.write("Companies")
    
    company_base_df = pd.read_excel("Data/Company_Base_Definitivo.xlsx",
                                    sheet_name='Compilado')
    col1, col2 = st.columns((1, 1.681))
    companies_id_dict = get_dict_companies()
    tickers = col2.multiselect("Seleccionasr Empresa",
                               company_base_df["Ticker"],
                               ["ITUB4"])
    country = col2.multiselect("Seleccionasr Empresa",
                               company_base_df["Portfolio_Country"].unique(),
                               ["Brazil"])
    id_quants= [str(companies_id_dict[ticker]) for ticker in tickers]
    fields_ls= ["IQ_CLOSEPRICE_ADJ", "IQ_MARKETCAP"]
    field = col1.selectbox("Selecione un campo", fields_ls)
    start = '2020-01-01'
    df = get_asset_field(id_quants, field, start, rename=['asset'])
    df = df.ffill(axis=0)
    tickers = list(tickers)
    company_id_dict = dict(zip(company_base_df["Ticker"], company_base_df["ID_Quant"]))
    id_company_dict = dict(zip(company_base_df["ID_Quant"], company_base_df["Ticker"]))
    df.columns = [id_company_dict[int(col)] for col in df.columns]
    st.title('Cierre Ajustado Mongo Quant')
    col1, col2, col3 = st.columns(3)
    mm2 = col2.checkbox("Indice Pais")
    mm3 = col3.checkbox("Indice Sector")
    if len(tickers) == 1:
        mm = col1.checkbox("Medias moviles")
        rollings = [20,60,240]
        dicc_mm = {
            tickers[0] + f' {x}':df[tickers[0]].rolling(x).mean() for x in rollings
            }
        df2 =pd.concat(dicc_mm.values(), keys=dicc_mm.keys(), axis=1)
        df = pd.concat([df, df2], axis=1)
        if mm2:
            mc_df = (1+get_macro_field(country, "INDEX", start)).cumprod()
            df = pd.concat([df, mc_df], axis=1).ffill(axis=0)
            df = df.iloc[len(df) - 252: ]
            
        else:
            df = df.iloc[len(df) - 252: ]
        if not mm and not mm2:
            st.write(df)
            st.line_chart(df[df.columns[0]])
        elif not mm and mm2:
            df = df[[df.columns[0],df.columns[-1]]]/df.iloc[0][[df.columns[0],df.columns[-1]]]
            st.write(df)
            st.line_chart(df)
        else:
            st.write(df)
            st.line_chart(df)
    if len(tickers) > 1:
        if mm2:
            mc_df = (1+get_macro_field(country, "INDEX", start)).cumprod()
            df = pd.concat([df, mc_df], axis=1).ffill(axis=0)
            if mm3:
                mc_df = (1+get_macro_field(country, "Banks_INDEX", start)).cumprod()
                df = pd.concat([df, mc_df], axis=1).ffill(axis=0)
        df = df.iloc[len(df)-252:]
        # st.write(df.iloc[0])
        # st.write(df.iloc[-1])
        
        st.line_chart(df/df.iloc[0]) #/df.iloc[0]-1)

import json

def save_index(list_assets, titulo):
    with open('Data/index.json', 'r') as json_file:
        json_object = json.load(json_file)
        

    json_object[titulo] = list_assets
    with open('Data/index.json', 'w') as outfile:
        json.dump(json_object, outfile)
    outfile.close()

@st.experimental_memo
def read_scoring():
    key = creds3["S3_KEY_ID"]
    secret_key = creds3["S3_SECRET_KEY"]
    bucket = creds3["S3_BUCKET"]
    path ="scoring.xlsx"
    scoring = read_excel_s3(key, secret_key, bucket, path)
    return scoring

def read_excel_s3(key, secret_key, bucket, path):
    s3_client = boto3.client('s3', aws_access_key_id = key, aws_secret_access_key= secret_key)
    response =  s3_client.get_object(Bucket=bucket, Key=path)
    data = response["Body"].read()
    df = pd.read_excel(io.BytesIO(data), engine='openpyxl')
    return df


def get_table_excel_link(df, name):
    towrite = io.BytesIO()
    writer = pd.ExcelWriter(towrite, engine='xlsxwriter')
    downloaded_file = df.to_excel(writer, encoding='utf-8', index=True, 
                                  header=True)
    workbook = writer.book
    worksheet = writer.sheets["Sheet1"]
    #set the column width as per your requirement
    worksheet.set_column('A:BZ', 18)
    writer.save()
    towrite.seek(0)  # reset pointer
    file_name = name+'.xlsx'
    style = 'style="color:black;text-decoration: none; font-size:18px;" '
    name_mark = name
    b64 = base64.b64encode(towrite.read()).decode()  # some strings
    linko = f'<center><a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" '+style+'download="'+file_name+'"><button>'+name_mark+'</button></a></center>'
    return linko






def index_constructor():
    try:
        company_base_df = pd.read_excel("Data/Company_Base_Definitivo.xlsx",
                                        sheet_name='Compilado')
        scoring = read_scoring()[["Ticker", "Large/Small", "Market_Cap", "ADTV"]]
        company_base_df = company_base_df.merge(scoring, how='left', on='Ticker')
        col1, col2, col3, col4 = st.columns(4)
        country = col1.selectbox("Country",["All", "Chile", "Brazil", "Mexico", "Peru", "Colombia"])
        large_small = col2.selectbox("Large/Small", ["All", "Large", "Small"])
        start = col3.text_input('Date', '2022-01')
        field1 = col4.selectbox("Field", ['IQ_CLOSEPRICE_ADJ', 'IQ_PBV'])
        if col1.checkbox("Filtro por Mkt Cap"):
            mkt_cap = col2.number_input("Mkt Cap Min", value=1000)
            company_base_df = company_base_df[company_base_df["Market_Cap"]>mkt_cap]
        if col3.checkbox("Filtro por ADTV"):
            adtv = col4.number_input("ADTV Min", value=1)
            company_base_df = company_base_df[company_base_df["ADTV"]>adtv]
        if country != "All":
            company_base_df = company_base_df[company_base_df["Portfolio_Country"]==country]
        if large_small != "All":
            company_base_df = company_base_df[company_base_df["Large/Small"]==large_small] 
        if st.checkbox("Seleccionar todos"):
            tickers = st.multiselect("Seleccionar Empresa",
                                     company_base_df["Ticker"],
                                     company_base_df["Ticker"])
        else:
            tickers = st.multiselect("Seleccionasr Empresa2",
                                     company_base_df["Ticker"],)
        if len(tickers)> 0:
            titulo = col1.text_input("Titulo")
            save_index = col2.button("Save Index")
            if save_index:
                save_index(tickers, titulo)
            companies_id_dict = dict(zip(company_base_df["Ticker"],
                                         company_base_df["ID_Quant"]))
            id_company_dict = dict(zip(company_base_df["ID_Quant"],
                                       company_base_df["Ticker"]))
            id_quants = [str(companies_id_dict[ticker]) for ticker in tickers]
    
            field = get_asset_field(id_quants,
                                    field1,
                                    start,
                                    expand=False,
                                    rename=['asset'])
            ccy = tables.MacroMaster(instrument='FX_USD',
                                     currency='CLP').query(start=start)
            if field1 == 'IQ_CLOSEPRICE_ADJ':
                rets = field.pct_change() # field.mul(ccy, axis=0).pct_change()
            else:
                rets = field.ffill(0)
            mkt_cap = get_asset_field(id_quants,
                                      'IQ_MARKETCAP',
                                      start,
                                      expand=False,
                                      rename=['asset']).ffill(0)
            weights = mkt_cap.div(mkt_cap.sum(axis=1), axis=0).shift(1)
            
            if field1 == 'IQ_CLOSEPRICE_ADJ':
                st.line_chart((1 +(rets * weights).sum(axis=1)).cumprod()-1)
                bm = (1 +(rets * weights).sum(axis=1)).cumprod()-1
            else:
                st.line_chart((rets * weights).sum(axis=1))
                bm =(rets * weights).sum(axis=1)
            company_id_dict = dict(zip(company_base_df["Ticker"],
                                       company_base_df["ID_Quant"]))
            id_company_dict = dict(zip(company_base_df["ID_Quant"],
                                       company_base_df["Ticker CIQ"]))
            weights.columns = [id_company_dict[int(col)] for col in weights.columns]
            rets.columns = [id_company_dict[int(col)] for col in rets.columns]
            index = (1+get_macro_field('Chile', "INDEX", start)).cumprod()
            col1, col2, col3, col4 = st.columns(4)
            col1.markdown(get_table_excel_link(index, "Index"),
                          unsafe_allow_html=True)
            col2.markdown(get_table_excel_link(weights, "Weights"),
                          unsafe_allow_html=True)
            col3.markdown(get_table_excel_link(rets, "Retornos"),
                          unsafe_allow_html=True)
            col4.markdown(get_table_excel_link(bm, "bm"), unsafe_allow_html=True)
            
    except Exception as exc:
        st.write(exc)


def pca(rets):
    from sklearn.decomposition import PCA
    import numpy as np
    st.header('PCA')
    pca = PCA(n_components=10)
    rets_arr = np.array(rets.fillna(0))
    rets_df = pd.DataFrame(rets_arr, columns = rets.columns, index= rets.index)
    st.subheader('Retornos')
    st.write(rets_df)
    retorno_factores_arr = pca.fit_transform(rets_arr)
    weights = pd.DataFrame(pca.components_, columns = rets.columns)
    st.subheader('Weights')
    st.write(weights)
    ret_factor_fin = pd.DataFrame(retorno_factores_arr, index= rets.index)
    st.subheader('Retornos Factores')
    st.write(ret_factor_fin)
    col1, col2 = st.columns(2)
    st.write(pca.explained_variance_ratio_)
    st.write(pca.explained_variance_ratio_.cumsum())
    
    col1.markdown(get_table_excel_link(weights, "Weights"),
                  unsafe_allow_html=True)
    col2.markdown(get_table_excel_link(ret_factor_fin, "Retornos PCA"),
                  unsafe_allow_html=True)