Spaces:
Running
Running
import os | |
from datetime import datetime | |
import random | |
import gradio as gr | |
from datasets import load_dataset, Dataset | |
from huggingface_hub import whoami | |
EXAM_DATASET_ID = os.getenv("EXAM_DATASET_ID") or "agents-course/unit_1_quiz" | |
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10 | |
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7 | |
ds = load_dataset(EXAM_DATASET_ID, split="train") | |
# Convert dataset to a list of dicts and randomly sort | |
quiz_data = ds.to_pandas().to_dict("records") | |
random.shuffle(quiz_data) | |
# Limit to max questions if specified | |
if EXAM_MAX_QUESTIONS: | |
quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)] | |
def on_user_logged_in(token: gr.OAuthToken | None): | |
""" | |
If the user has a valid token, hide the login button and show the Start button. | |
Otherwise, keep the login button visible, hide Start. | |
""" | |
if token is not None: | |
return gr.update(visible=False), gr.update(visible=False) | |
else: | |
# Not logged in, keep the login visible, hide Start | |
return gr.update(visible=True), gr.update(visible=False) | |
def push_results_to_hub(user_answers, token: gr.OAuthToken | None): | |
""" | |
Create a new dataset from user_answers and push it to the Hub. | |
Calculates grade and checks against passing threshold. | |
""" | |
if token is None: | |
gr.Warning("Please log in to Hugging Face before pushing!") | |
return | |
# Calculate grade | |
correct_count = sum(1 for answer in user_answers if answer["is_correct"]) | |
total_questions = len(user_answers) | |
grade = correct_count / total_questions if total_questions > 0 else 0 | |
if grade < float(EXAM_PASSING_SCORE): | |
gr.Warning( | |
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}" | |
) | |
return f"You scored {grade:.1%}. Please try again to achieve at least {float(EXAM_PASSING_SCORE):.1%}" | |
gr.Info("Submitting answers to the Hub. Please wait...", duration=2) | |
user_info = whoami(token=token.token) | |
repo_id = f"{EXAM_DATASET_ID}_student_responses" | |
submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
new_ds = Dataset.from_list(user_answers) | |
new_ds = new_ds.map( | |
lambda x: { | |
"username": user_info["name"], | |
"datetime": submission_time, | |
"grade": grade, | |
} | |
) | |
new_ds.push_to_hub(repo_id) | |
return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}" | |
def handle_quiz(question_idx, user_answers, selected_answer, is_start): | |
""" | |
A single function that handles both 'Start' and 'Next' logic: | |
- If is_start=True, skip storing an answer and show the first question. | |
- Otherwise, store the last answer and move on. | |
- If we've reached the end, display results. | |
""" | |
# Hide the start button once the first question is shown | |
start_btn_update = gr.update(visible=False) if is_start else None | |
# If this is the first time (start=True), begin at question_idx=0 | |
if is_start: | |
question_idx = 0 | |
else: | |
# If not the very first question, store the user's last selection | |
if question_idx < len(quiz_data): | |
current_q = quiz_data[question_idx] | |
correct_reference = current_q["correct_answer"] | |
correct_reference = f"answer_{correct_reference}".lower() | |
is_correct = selected_answer == current_q[correct_reference] | |
user_answers.append( | |
{ | |
"question": current_q["question"], | |
"selected_answer": selected_answer, | |
"correct_answer": current_q[correct_reference], | |
"is_correct": is_correct, | |
"correct_reference": correct_reference, | |
} | |
) | |
question_idx += 1 | |
# If we've reached the end, show final results | |
if question_idx >= len(quiz_data): | |
correct_count = sum(1 for answer in user_answers if answer["is_correct"]) | |
grade = correct_count / len(user_answers) | |
results_text = ( | |
f"**Quiz Complete!**\n\n" | |
f"Your score: {grade:.1%}\n" | |
f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n" | |
) | |
return ( | |
"", # question_text becomes blank | |
gr.update(choices=[], visible=False), | |
f"{'β Passed!' if grade >= float(EXAM_PASSING_SCORE) else 'β Did not pass'}", | |
question_idx, | |
user_answers, | |
start_btn_update, | |
gr.update(value=results_text, visible=True), # show final_markdown | |
) | |
else: | |
# Otherwise, show the next question | |
q = quiz_data[question_idx] | |
updated_question = f"## Question {question_idx + 1} \n### {q['question']}" | |
return ( | |
updated_question, | |
gr.update( | |
choices=[ | |
q["answer_a"], | |
q["answer_b"], | |
q["answer_c"], | |
q["answer_d"], | |
], | |
value=None, | |
visible=True, | |
), | |
"Select an answer and click 'Next' to continue.", | |
question_idx, | |
user_answers, | |
start_btn_update, | |
gr.update(visible=False), # Hide final_markdown for now | |
) | |
def success_message(response): | |
# response is whatever push_results_to_hub returned | |
return f"{response}\n\n**Success!**" | |
with gr.Blocks() as demo: | |
demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}" | |
# State variables | |
question_idx = gr.State(value=0) | |
user_answers = gr.State(value=[]) | |
with gr.Row(variant="compact"): | |
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz") | |
with gr.Row(variant="compact"): | |
gr.Markdown( | |
"Log in first, then click 'Start' to begin. Answer each question, click 'Next', and finally click 'Submit' to publish your results to the Hugging Face Hub." | |
) | |
# We display question text with Markdown | |
with gr.Row( | |
variant="panel", | |
): | |
question_text = gr.Markdown("") | |
radio_choices = gr.Radio( | |
choices=[], visible=False, label="Your Answer", scale=1.5 | |
) | |
with gr.Row(variant="compact"): | |
status_text = gr.Markdown("") | |
with gr.Row(variant="compact"): | |
# Final results after all questions are done | |
final_markdown = gr.Markdown("", visible=False) | |
next_btn = gr.Button("Next βοΈ") | |
submit_btn = gr.Button("Submit β ") | |
with gr.Row(variant="compact"): | |
login_btn = gr.LoginButton() | |
# We'll hide the Start button until user logs in | |
start_btn = gr.Button("Start", visible=False) | |
# Use click() instead of login() | |
login_btn.click(fn=on_user_logged_in, inputs=None, outputs=[login_btn, start_btn]) | |
# Click "Start" => show first question, hide Start button | |
start_btn.click( | |
fn=handle_quiz, | |
inputs=[question_idx, user_answers, radio_choices, gr.State(True)], | |
outputs=[ | |
question_text, | |
radio_choices, | |
status_text, | |
question_idx, | |
user_answers, | |
start_btn, | |
final_markdown, | |
], | |
) | |
# Click "Next" => store selection, move on | |
next_btn.click( | |
fn=handle_quiz, | |
inputs=[question_idx, user_answers, radio_choices, gr.State(False)], | |
outputs=[ | |
question_text, | |
radio_choices, | |
status_text, | |
question_idx, | |
user_answers, | |
start_btn, | |
final_markdown, | |
], | |
) | |
submit_btn.click(fn=push_results_to_hub, inputs=[user_answers]) | |
if __name__ == "__main__": | |
# Note: If testing locally, you'll need to run `huggingface-cli login` or set HF_TOKEN | |
# environment variable for the login to work locally. | |
demo.launch() | |