File size: 18,830 Bytes
7625832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa8c4d9
7625832
 
 
 
aa8c4d9
7625832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
from color_palette.regressor.config import config_to_use
import numpy as np
from PIL import Image, ImageFont, ImageDraw
from sklearn.linear_model import LinearRegression
from color_palette.model.GNN import ColorAttentionClassification
from color_palette.regressor.model import Color2CubeDataset
from color_palette.regressor.config import *
from torch.utils.data import Dataset, DataLoader
from color_palette.dataset import GraphDestijlDataset
from color_palette.config import DataConfig
import random
import os
import torch.nn.functional as F
import torch
import gradio as gr

config = DataConfig()
model_name = config.model_name
dataset_root = config.dataset
feature_size = config.feature_size
device = config.device
image_folder = "img_folder"

if not os.path.exists(image_folder):
    os.mkdir(image_folder)

def train_regressor(train_loader):
    X = []
    y = []
    for i, (input_data, target) in enumerate(train_loader):
        input_data = np.squeeze(input_data)
        target = np.squeeze(target)
        X.append(input_data)
        y.append(target)

    X = np.stack(X, axis=0)
    y = np.squeeze(np.stack(y, axis=0))

    print("Before regressor train!\n")

    reg = LinearRegression().fit(X, y)

    return reg

model_weight_path = "models/" + model_name + "/weights/best.pth"

# palettes = np.load(config_to_use.save_folder+'/new_palettes_purple.npy')
# original_palettes = np.load(config_to_use.save_folder+'/original_palettes_purple.npy')

graph_test_dataset = GraphDestijlDataset(root=dataset_root, test=True, cube_mapping=True)
model = ColorAttentionClassification(feature_size).to(device)
model.load_state_dict(torch.load(model_weight_path)["state_dict"])

dataset = Color2CubeDataset(config=config_to_use)
train_loader = DataLoader(dataset, batch_size=1, shuffle=False)
regressor = train_regressor(train_loader=train_loader)

palette_of_the_design = [[0, 0, 0] for i in range(5)]
all_node_colors = None
class Demo:
    def __init__(self, graph_dataset):
        self.dataset = graph_dataset

        first_sample_idx = random.randint(0, len(self.dataset)-1)
        self.input_data, self.target_color, node_to_mask, also_normal_values = self.dataset.get(first_sample_idx)
        global all_node_colors
        all_node_colors = also_normal_values
        self.same_indices = None
        self.generate_img_from_palette([color.detach().numpy()*255 for color in also_normal_values], is_first=True)

    def demo_reset(self):
        first_sample_idx = random.randint(0, len(self.dataset))
        self.input_data, self.target_color, node_to_mask, also_normal_values = self.dataset.get(first_sample_idx)
        global all_node_colors
        all_node_colors = also_normal_values
        self.generate_img_from_palette([color.detach().numpy()*255 for color in also_normal_values], is_first=True)

    def generate_img_from_palette(self, palette, canvas_size=512, is_first=False):
        palette = np.array(palette).astype('int')
        rgb_bg, rgb_text, rgb_text, rgb_circle, rgb_main_img, rgb_img1, rgb_img2, rgb_img3 = [tuple(color) for color in palette]
        if is_first:
            self.same_indices, unique_colors, _ = self.return_all_same_colors(palette=palette)
        else:
            _, unique_colors, _ = self.return_all_same_colors(palette=palette)

        # assign the current palette using global keyword 
        global palette_of_the_design
        palette_of_the_design = unique_colors

        # Set the background color and create an empty PIL Image to fill with shapes and text
        image = Image.new("RGB", (canvas_size, canvas_size), color=rgb_bg)
        # Save background image

        title = "Lorem Ipsum Dolor"
        undertitle = "Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, \n consectetur, adipisci velit..."

        draw = ImageDraw.Draw(image)
        # Set settings for the fonts
        font_title = ImageFont.truetype("Arial.ttf", 32)
        title_width, title_height = draw.textsize(title, font=font_title)
        title_x = (canvas_size - title_width) // 2
        title_y = (canvas_size - title_height) // 2 - 100

        font_undertitle = ImageFont.truetype("Arial.ttf", 15)
        text_width, text_height = draw.textsize(undertitle, font=font_undertitle)
        undertitle_x = (canvas_size - text_width) // 2
        undertitle_y = (canvas_size - text_height) // 2 - 50
        # Draw titles
        draw.text((title_x, title_y), title, fill=rgb_text, font=font_title)
        draw.text((undertitle_x, undertitle_y), undertitle, fill=rgb_text, font=font_undertitle)

        # Draw the circle
        rad = random.randint(30, 70)
        x = random.randint(400, 512-(rad+10))
        y = random.randint(10, title_y-(rad+10))

        draw.ellipse((x, y, x+rad, y+rad), fill=rgb_circle)

        # Draw the image
        for j, color in enumerate([rgb_main_img, rgb_img1, rgb_img2, rgb_img3]):
            x = 512-((j+1)*60)
            y = 512-((j+1)*60)
            
            if j == 0:
                rad = 80
                draw.rectangle((x, y, x+rad, y+rad), fill=color)
            else:
                rad = 40
                draw.rectangle((x, y, x+rad, y+rad), fill=color)

        image.save(os.path.join("deneme.png"))

    def run_model(self, input_data, target_color, node_to_mask, updated_color):

        global all_node_colors
        palette = np.array([color.detach().numpy()*255 for color in all_node_colors]).astype('int')
        same_indices_list, unique_colors, first_indices = self.return_all_same_colors(palette)

        unique_colors = unique_colors/255

        selected_color = torch.Tensor(updated_color)/255
        map_node_to_mask = -1
        print("same indices list")
        print(self.same_indices)
        print("node to mask")
        print(node_to_mask)
        for i, idxs in enumerate(self.same_indices):
            if node_to_mask in idxs:
                map_node_to_mask = i
                print("map node to mask: ", i)

        for i, indices in enumerate(self.same_indices):
            
            if i == 0:
                # update the color [0.15, 0.4908, 0.73]
                cube_num_of_selected = self.rgb2cube(selected_color*255)
                one_hot = np.zeros((64,))
                one_hot[int(cube_num_of_selected)] = 1.0
                node_to_recommend = map_node_to_mask
                input_data.x[same_indices_list[map_node_to_mask], 4:] = torch.Tensor(one_hot)
                unique_colors[map_node_to_mask] = selected_color
            else:
                if i == map_node_to_mask:
                    zeroth_bin = 0
                    indices = same_indices_list[zeroth_bin]
                    node_to_recommend = 0
                    input_data.x[indices[0], 4:] = torch.zeros((input_data.x.shape[1]-4))
                    node_to_mask = indices[0]
                else:
                    node_to_recommend = i
                    input_data.x[indices[0], 4:] = torch.zeros((input_data.x.shape[1]-4))
                    node_to_mask = indices[0]

                out = self.forward_pass(model, input_data) # input data has one-hot color features
                if torch.is_tensor(node_to_mask):
                    node_to_mask = node_to_mask.item()
                values, values_indices = torch.topk(F.softmax(out[node_to_mask, :], dim=0), k=3, dim=0) # predict the color cube of the recommendation
                prediction = values_indices.detach().numpy()[2]
                # construct a palette using unique RGB palette and one-hot representation of the prediction cube.
                feature_vector = self.create_rgb_and_one_hot_cube_vector(unique_colors, prediction, node_to_recommend)
                # map cube to rgb color space using the regressor
                recommendation = regressor.predict(feature_vector)[0]
                # we now have the first set of recommendations. Now, we need to update the colors and input_data to propagate information.
                # update the color in the palette and run the algorithm for rest of the palette.
                # for that, first map the color to cube and convert to one_hot
                input_data, unique_colors = self.update_palette(input_data, unique_colors, recommendation, same_indices_list, node_to_recommend)
                # recursively do this here.
                # save the results.
        return np.array(unique_colors*255).astype(int)

    def rgb2cube(self, color):
        intervals = np.arange(0, 256, 256//4)
        cube_coordinates = []
        for channel in color:
            i = 0
            for j, value in enumerate(intervals):
                if value < channel:
                    i = j
            cube_coordinates.append(i)
        
        cube_num = cube_coordinates[0]*1 + cube_coordinates[1]*4 + cube_coordinates[2]*4*4
        return cube_num
    
    def cube2rgb(self, cube_num):
        """
            Return the start of the ranges
        """
        cube_num = int(cube_num)
        intervals = np.arange(0, 256, 256//4)
        coor2 = cube_num // 16
        coor1 = (cube_num - coor2*4*4) // 4
        coor0 = cube_num - coor2*4*4 - coor1*4
        return [intervals[coor0], intervals[coor1], intervals[coor2]]

    def return_all_same_colors(self, palette):

        indices_list = [[],[],[],[],[]]
        unique_colors, first_indices = np.unique(palette, axis=0, return_index=True)

        unique_colors = np.array(unique_colors)
        all_colors = np.array(palette)

        for idx, color in enumerate(unique_colors):
            for node_num, element in enumerate(all_colors):
                if np.equal(color, element).all():
                    indices_list[idx].append(node_num)

        # these palettes and indices also include the masked color
        return indices_list, unique_colors, first_indices

    def update_palette(self, input_data, unique_rgb_palette, recommendation, indices_list, idx_to_idxs):
        # convert prediction to one-hot vector
        cube_num_of_the_changed_color = self.rgb2cube(recommendation*255)
        one_hot = np.zeros((64,))
        one_hot[int(cube_num_of_the_changed_color)] = 1.0

        # update the feature vector accordingly for all the same colors
        for idx in indices_list[idx_to_idxs]:
            input_data.x[idx, 4:] = torch.Tensor(one_hot)

        # update the unique color vector
        unique_rgb_palette[idx_to_idxs] = recommendation
        return input_data, unique_rgb_palette


    def create_rgb_and_one_hot_cube_vector(self, rgb_palette, cube_num, node_to_mask):
        one_hot = np.zeros((64,))
        one_hot[int(cube_num)] = 1.0
        removed_palette = np.delete(rgb_palette, node_to_mask, axis=0)
        feature_vector = np.concatenate((removed_palette.flatten(), one_hot), axis=0)
        return feature_vector.reshape(1, -1)

    def create_all_one_hot_vector(self, rgb_palette, cube_num, node_to_mask):
        one_hot = np.zeros((64,))
        one_hot[int(cube_num)] = 1.0
        removed_palette = np.delete(rgb_palette, node_to_mask, axis=0)
        new_input_data = []
        for color in removed_palette:
            color_cube_num = self.rgb2cube(color*255)
            empty_arr = np.zeros((64,))
            empty_arr[int(color_cube_num)] = 1.0
            new_input_data.append(empty_arr)

        feature_vector = np.concatenate((np.array(new_input_data).flatten(), one_hot), axis=0)
        return feature_vector.reshape(1, -1)

    def forward_pass(self, model, data):
        model.eval()
        out = model(data.x, data.edge_index.long(), data.edge_weight)
        return out

    def rearrange_indices_list(self, indices_list, node_to_mask, unique_rgb_palette):
        # take the node_to_mask indices to the beginning of the list
        for i in range(len(indices_list)):
            if node_to_mask in indices_list[i]:
                index_to_pop = i

        idxs = indices_list.pop(index_to_pop)
        palette = unique_rgb_palette[index_to_pop]
        temp_palette = np.delete(unique_rgb_palette, index_to_pop, axis=0)
        unique_rgb_palette = np.concatenate(([palette], temp_palette), axis=0)
        return [idxs] + indices_list, unique_rgb_palette

    def update_color(self, updated_color, idx):
        """
        Takes a color and assigns it to the palette and the image.
        """
        idx = int(idx)
        color = updated_color[1:-1].split(",")
        color = [int(num) for num in color]

        index_list = self.same_indices[idx]
        which_one = random.randint(0, len(index_list)-1)
        idx_to_update = index_list[which_one]

        unique_colors = self.run_model(self.input_data, self.target_color, idx_to_update, color)

        global palette_of_the_design
        palette_of_the_design = unique_colors
        
        global all_node_colors
        if torch.is_tensor(all_node_colors):
            all_node_colors = all_node_colors.detach().numpy()
        for i, index_list in enumerate(self.same_indices):
            for index in index_list:
                all_node_colors[index] = unique_colors[i]

        self.generate_img_from_palette(palette=[color for color in all_node_colors])
        main_image = Image.open("deneme.png")
        gradio_elements = []
        gradio_elements.append(gr.Image(main_image, height=256, width=256))
        for i in range(len(self.same_indices)):
            color = unique_colors[i]
            image = Image.new("RGB", (512, 512), color=tuple(color))
            gradio_elements.append(gr.Image(image, height=64, width=64))
            string_version = "["+str(color[0])+", "+ str(color[1])+", " + str(color[2])+"]"
            gradio_elements.append(gr.Textbox(value=string_version, min_width=64))
    
        all_node_colors = torch.Tensor(all_node_colors) / 255
        return tuple(gradio_elements)
    
def perform_reset(button_input):
    global demo
    global all_node_colors
    gradio_elements = []

    demo.demo_reset()
    main_image = Image.open("deneme.png")
    gradio_elements = []
    gradio_elements.append(gr.Image(main_image, height=256, width=256))
    
    for color in palette_of_the_design:
        image = Image.new("RGB", (512, 512), color=tuple(color))
        gradio_elements.append(gr.Image(image, height=64, width=64))
        string_version = "["+str(color[0])+", "+ str(color[1])+", " + str(color[2])+"]"
        gradio_elements.append(gr.Textbox(value=string_version, min_width=64))

    return tuple(gradio_elements)


demo = Demo(graph_dataset=graph_test_dataset)

# Form a gradio template to display images and update the colors.

with gr.Blocks() as project_demo:
    with gr.Row():
        image = Image.open("deneme.png")
        design = gr.Image(image, height=256, width=256)

    with gr.Row():
        with gr.Column(min_width=100):
            image1 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[0]))
            image1_gr = gr.Image(image1, height=64, width=64)
            string1 = "["+str(palette_of_the_design[0][0])+", "+ str(palette_of_the_design[0][1])+", " + str(palette_of_the_design[0][2])+"]"
            color1_update = gr.Textbox(value=string1, min_width=64)
            color1_button = gr.Button(value="Update Color 1", min_width=64)
        with gr.Column(min_width=100):
            image2 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[1]))
            image2_gr = gr.Image(image2, height=64, width=64)
            string2 = "["+str(palette_of_the_design[1][0])+", "+ str(palette_of_the_design[1][1])+", " + str(palette_of_the_design[1][2])+"]"
            color2_update = gr.Textbox(value=string2, min_width=64)
            color2_button = gr.Button(value="Update Color 2", min_width=64)
        with gr.Column(min_width=100):
            image3 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[2]))
            image3_gr = gr.Image(image3, height=64, width=64)
            string3 = "["+str(palette_of_the_design[2][0])+", "+ str(palette_of_the_design[2][1])+", " + str(palette_of_the_design[2][2])+"]"
            color3_update = gr.Textbox(value=string3, min_width=64)
            color3_button = gr.Button(value="Update Color 3", min_width=64)
        with gr.Column(min_width=100):
            image4 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[3]))
            image4_gr = gr.Image(image4, height=64, width=64)
            string4 = "["+str(palette_of_the_design[3][0])+", "+ str(palette_of_the_design[3][1])+", " + str(palette_of_the_design[3][2])+"]"
            color4_update = gr.Textbox(value=string4, min_width=64)
            color4_button = gr.Button(value="Update Color 4", min_width=64)
        with gr.Column(min_width=100):
            image5 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[4]))
            image5_gr = gr.Image(image5, height=64, width=64)
            string5 = "["+str(palette_of_the_design[4][0])+", "+ str(palette_of_the_design[4][1])+", " + str(palette_of_the_design[4][2])+"]"
            color5_update = gr.Textbox(value=string5, min_width=64)
            color5_button = gr.Button(value="Update Color 5", min_width=64)
        
    with gr.Row():
        reset_button = gr.Button(value="Reset the palette", min_width=64)

    zero = gr.Number(value=0, visible=False)
    one = gr.Number(value=1, visible=False)
    two = gr.Number(value=2, visible=False)
    three = gr.Number(value=3, visible=False)
    four = gr.Number(value=4, visible=False)
    color1_button.click(fn=demo.update_color, inputs=[color1_update, zero], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
    color2_button.click(fn=demo.update_color, inputs=[color2_update, one], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
    color3_button.click(fn=demo.update_color, inputs=[color3_update, two], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
    color4_button.click(fn=demo.update_color, inputs=[color4_update, three], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
    color5_button.click(fn=demo.update_color, inputs=[color5_update, four], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
    reset_button.click(fn=perform_reset, inputs=[reset_button], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])

    project_demo.launch()