Spaces:
Running
Running
File size: 18,830 Bytes
7625832 aa8c4d9 7625832 aa8c4d9 7625832 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
from color_palette.regressor.config import config_to_use
import numpy as np
from PIL import Image, ImageFont, ImageDraw
from sklearn.linear_model import LinearRegression
from color_palette.model.GNN import ColorAttentionClassification
from color_palette.regressor.model import Color2CubeDataset
from color_palette.regressor.config import *
from torch.utils.data import Dataset, DataLoader
from color_palette.dataset import GraphDestijlDataset
from color_palette.config import DataConfig
import random
import os
import torch.nn.functional as F
import torch
import gradio as gr
config = DataConfig()
model_name = config.model_name
dataset_root = config.dataset
feature_size = config.feature_size
device = config.device
image_folder = "img_folder"
if not os.path.exists(image_folder):
os.mkdir(image_folder)
def train_regressor(train_loader):
X = []
y = []
for i, (input_data, target) in enumerate(train_loader):
input_data = np.squeeze(input_data)
target = np.squeeze(target)
X.append(input_data)
y.append(target)
X = np.stack(X, axis=0)
y = np.squeeze(np.stack(y, axis=0))
print("Before regressor train!\n")
reg = LinearRegression().fit(X, y)
return reg
model_weight_path = "models/" + model_name + "/weights/best.pth"
# palettes = np.load(config_to_use.save_folder+'/new_palettes_purple.npy')
# original_palettes = np.load(config_to_use.save_folder+'/original_palettes_purple.npy')
graph_test_dataset = GraphDestijlDataset(root=dataset_root, test=True, cube_mapping=True)
model = ColorAttentionClassification(feature_size).to(device)
model.load_state_dict(torch.load(model_weight_path)["state_dict"])
dataset = Color2CubeDataset(config=config_to_use)
train_loader = DataLoader(dataset, batch_size=1, shuffle=False)
regressor = train_regressor(train_loader=train_loader)
palette_of_the_design = [[0, 0, 0] for i in range(5)]
all_node_colors = None
class Demo:
def __init__(self, graph_dataset):
self.dataset = graph_dataset
first_sample_idx = random.randint(0, len(self.dataset)-1)
self.input_data, self.target_color, node_to_mask, also_normal_values = self.dataset.get(first_sample_idx)
global all_node_colors
all_node_colors = also_normal_values
self.same_indices = None
self.generate_img_from_palette([color.detach().numpy()*255 for color in also_normal_values], is_first=True)
def demo_reset(self):
first_sample_idx = random.randint(0, len(self.dataset))
self.input_data, self.target_color, node_to_mask, also_normal_values = self.dataset.get(first_sample_idx)
global all_node_colors
all_node_colors = also_normal_values
self.generate_img_from_palette([color.detach().numpy()*255 for color in also_normal_values], is_first=True)
def generate_img_from_palette(self, palette, canvas_size=512, is_first=False):
palette = np.array(palette).astype('int')
rgb_bg, rgb_text, rgb_text, rgb_circle, rgb_main_img, rgb_img1, rgb_img2, rgb_img3 = [tuple(color) for color in palette]
if is_first:
self.same_indices, unique_colors, _ = self.return_all_same_colors(palette=palette)
else:
_, unique_colors, _ = self.return_all_same_colors(palette=palette)
# assign the current palette using global keyword
global palette_of_the_design
palette_of_the_design = unique_colors
# Set the background color and create an empty PIL Image to fill with shapes and text
image = Image.new("RGB", (canvas_size, canvas_size), color=rgb_bg)
# Save background image
title = "Lorem Ipsum Dolor"
undertitle = "Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, \n consectetur, adipisci velit..."
draw = ImageDraw.Draw(image)
# Set settings for the fonts
font_title = ImageFont.truetype("Arial.ttf", 32)
title_width, title_height = draw.textsize(title, font=font_title)
title_x = (canvas_size - title_width) // 2
title_y = (canvas_size - title_height) // 2 - 100
font_undertitle = ImageFont.truetype("Arial.ttf", 15)
text_width, text_height = draw.textsize(undertitle, font=font_undertitle)
undertitle_x = (canvas_size - text_width) // 2
undertitle_y = (canvas_size - text_height) // 2 - 50
# Draw titles
draw.text((title_x, title_y), title, fill=rgb_text, font=font_title)
draw.text((undertitle_x, undertitle_y), undertitle, fill=rgb_text, font=font_undertitle)
# Draw the circle
rad = random.randint(30, 70)
x = random.randint(400, 512-(rad+10))
y = random.randint(10, title_y-(rad+10))
draw.ellipse((x, y, x+rad, y+rad), fill=rgb_circle)
# Draw the image
for j, color in enumerate([rgb_main_img, rgb_img1, rgb_img2, rgb_img3]):
x = 512-((j+1)*60)
y = 512-((j+1)*60)
if j == 0:
rad = 80
draw.rectangle((x, y, x+rad, y+rad), fill=color)
else:
rad = 40
draw.rectangle((x, y, x+rad, y+rad), fill=color)
image.save(os.path.join("deneme.png"))
def run_model(self, input_data, target_color, node_to_mask, updated_color):
global all_node_colors
palette = np.array([color.detach().numpy()*255 for color in all_node_colors]).astype('int')
same_indices_list, unique_colors, first_indices = self.return_all_same_colors(palette)
unique_colors = unique_colors/255
selected_color = torch.Tensor(updated_color)/255
map_node_to_mask = -1
print("same indices list")
print(self.same_indices)
print("node to mask")
print(node_to_mask)
for i, idxs in enumerate(self.same_indices):
if node_to_mask in idxs:
map_node_to_mask = i
print("map node to mask: ", i)
for i, indices in enumerate(self.same_indices):
if i == 0:
# update the color [0.15, 0.4908, 0.73]
cube_num_of_selected = self.rgb2cube(selected_color*255)
one_hot = np.zeros((64,))
one_hot[int(cube_num_of_selected)] = 1.0
node_to_recommend = map_node_to_mask
input_data.x[same_indices_list[map_node_to_mask], 4:] = torch.Tensor(one_hot)
unique_colors[map_node_to_mask] = selected_color
else:
if i == map_node_to_mask:
zeroth_bin = 0
indices = same_indices_list[zeroth_bin]
node_to_recommend = 0
input_data.x[indices[0], 4:] = torch.zeros((input_data.x.shape[1]-4))
node_to_mask = indices[0]
else:
node_to_recommend = i
input_data.x[indices[0], 4:] = torch.zeros((input_data.x.shape[1]-4))
node_to_mask = indices[0]
out = self.forward_pass(model, input_data) # input data has one-hot color features
if torch.is_tensor(node_to_mask):
node_to_mask = node_to_mask.item()
values, values_indices = torch.topk(F.softmax(out[node_to_mask, :], dim=0), k=3, dim=0) # predict the color cube of the recommendation
prediction = values_indices.detach().numpy()[2]
# construct a palette using unique RGB palette and one-hot representation of the prediction cube.
feature_vector = self.create_rgb_and_one_hot_cube_vector(unique_colors, prediction, node_to_recommend)
# map cube to rgb color space using the regressor
recommendation = regressor.predict(feature_vector)[0]
# we now have the first set of recommendations. Now, we need to update the colors and input_data to propagate information.
# update the color in the palette and run the algorithm for rest of the palette.
# for that, first map the color to cube and convert to one_hot
input_data, unique_colors = self.update_palette(input_data, unique_colors, recommendation, same_indices_list, node_to_recommend)
# recursively do this here.
# save the results.
return np.array(unique_colors*255).astype(int)
def rgb2cube(self, color):
intervals = np.arange(0, 256, 256//4)
cube_coordinates = []
for channel in color:
i = 0
for j, value in enumerate(intervals):
if value < channel:
i = j
cube_coordinates.append(i)
cube_num = cube_coordinates[0]*1 + cube_coordinates[1]*4 + cube_coordinates[2]*4*4
return cube_num
def cube2rgb(self, cube_num):
"""
Return the start of the ranges
"""
cube_num = int(cube_num)
intervals = np.arange(0, 256, 256//4)
coor2 = cube_num // 16
coor1 = (cube_num - coor2*4*4) // 4
coor0 = cube_num - coor2*4*4 - coor1*4
return [intervals[coor0], intervals[coor1], intervals[coor2]]
def return_all_same_colors(self, palette):
indices_list = [[],[],[],[],[]]
unique_colors, first_indices = np.unique(palette, axis=0, return_index=True)
unique_colors = np.array(unique_colors)
all_colors = np.array(palette)
for idx, color in enumerate(unique_colors):
for node_num, element in enumerate(all_colors):
if np.equal(color, element).all():
indices_list[idx].append(node_num)
# these palettes and indices also include the masked color
return indices_list, unique_colors, first_indices
def update_palette(self, input_data, unique_rgb_palette, recommendation, indices_list, idx_to_idxs):
# convert prediction to one-hot vector
cube_num_of_the_changed_color = self.rgb2cube(recommendation*255)
one_hot = np.zeros((64,))
one_hot[int(cube_num_of_the_changed_color)] = 1.0
# update the feature vector accordingly for all the same colors
for idx in indices_list[idx_to_idxs]:
input_data.x[idx, 4:] = torch.Tensor(one_hot)
# update the unique color vector
unique_rgb_palette[idx_to_idxs] = recommendation
return input_data, unique_rgb_palette
def create_rgb_and_one_hot_cube_vector(self, rgb_palette, cube_num, node_to_mask):
one_hot = np.zeros((64,))
one_hot[int(cube_num)] = 1.0
removed_palette = np.delete(rgb_palette, node_to_mask, axis=0)
feature_vector = np.concatenate((removed_palette.flatten(), one_hot), axis=0)
return feature_vector.reshape(1, -1)
def create_all_one_hot_vector(self, rgb_palette, cube_num, node_to_mask):
one_hot = np.zeros((64,))
one_hot[int(cube_num)] = 1.0
removed_palette = np.delete(rgb_palette, node_to_mask, axis=0)
new_input_data = []
for color in removed_palette:
color_cube_num = self.rgb2cube(color*255)
empty_arr = np.zeros((64,))
empty_arr[int(color_cube_num)] = 1.0
new_input_data.append(empty_arr)
feature_vector = np.concatenate((np.array(new_input_data).flatten(), one_hot), axis=0)
return feature_vector.reshape(1, -1)
def forward_pass(self, model, data):
model.eval()
out = model(data.x, data.edge_index.long(), data.edge_weight)
return out
def rearrange_indices_list(self, indices_list, node_to_mask, unique_rgb_palette):
# take the node_to_mask indices to the beginning of the list
for i in range(len(indices_list)):
if node_to_mask in indices_list[i]:
index_to_pop = i
idxs = indices_list.pop(index_to_pop)
palette = unique_rgb_palette[index_to_pop]
temp_palette = np.delete(unique_rgb_palette, index_to_pop, axis=0)
unique_rgb_palette = np.concatenate(([palette], temp_palette), axis=0)
return [idxs] + indices_list, unique_rgb_palette
def update_color(self, updated_color, idx):
"""
Takes a color and assigns it to the palette and the image.
"""
idx = int(idx)
color = updated_color[1:-1].split(",")
color = [int(num) for num in color]
index_list = self.same_indices[idx]
which_one = random.randint(0, len(index_list)-1)
idx_to_update = index_list[which_one]
unique_colors = self.run_model(self.input_data, self.target_color, idx_to_update, color)
global palette_of_the_design
palette_of_the_design = unique_colors
global all_node_colors
if torch.is_tensor(all_node_colors):
all_node_colors = all_node_colors.detach().numpy()
for i, index_list in enumerate(self.same_indices):
for index in index_list:
all_node_colors[index] = unique_colors[i]
self.generate_img_from_palette(palette=[color for color in all_node_colors])
main_image = Image.open("deneme.png")
gradio_elements = []
gradio_elements.append(gr.Image(main_image, height=256, width=256))
for i in range(len(self.same_indices)):
color = unique_colors[i]
image = Image.new("RGB", (512, 512), color=tuple(color))
gradio_elements.append(gr.Image(image, height=64, width=64))
string_version = "["+str(color[0])+", "+ str(color[1])+", " + str(color[2])+"]"
gradio_elements.append(gr.Textbox(value=string_version, min_width=64))
all_node_colors = torch.Tensor(all_node_colors) / 255
return tuple(gradio_elements)
def perform_reset(button_input):
global demo
global all_node_colors
gradio_elements = []
demo.demo_reset()
main_image = Image.open("deneme.png")
gradio_elements = []
gradio_elements.append(gr.Image(main_image, height=256, width=256))
for color in palette_of_the_design:
image = Image.new("RGB", (512, 512), color=tuple(color))
gradio_elements.append(gr.Image(image, height=64, width=64))
string_version = "["+str(color[0])+", "+ str(color[1])+", " + str(color[2])+"]"
gradio_elements.append(gr.Textbox(value=string_version, min_width=64))
return tuple(gradio_elements)
demo = Demo(graph_dataset=graph_test_dataset)
# Form a gradio template to display images and update the colors.
with gr.Blocks() as project_demo:
with gr.Row():
image = Image.open("deneme.png")
design = gr.Image(image, height=256, width=256)
with gr.Row():
with gr.Column(min_width=100):
image1 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[0]))
image1_gr = gr.Image(image1, height=64, width=64)
string1 = "["+str(palette_of_the_design[0][0])+", "+ str(palette_of_the_design[0][1])+", " + str(palette_of_the_design[0][2])+"]"
color1_update = gr.Textbox(value=string1, min_width=64)
color1_button = gr.Button(value="Update Color 1", min_width=64)
with gr.Column(min_width=100):
image2 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[1]))
image2_gr = gr.Image(image2, height=64, width=64)
string2 = "["+str(palette_of_the_design[1][0])+", "+ str(palette_of_the_design[1][1])+", " + str(palette_of_the_design[1][2])+"]"
color2_update = gr.Textbox(value=string2, min_width=64)
color2_button = gr.Button(value="Update Color 2", min_width=64)
with gr.Column(min_width=100):
image3 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[2]))
image3_gr = gr.Image(image3, height=64, width=64)
string3 = "["+str(palette_of_the_design[2][0])+", "+ str(palette_of_the_design[2][1])+", " + str(palette_of_the_design[2][2])+"]"
color3_update = gr.Textbox(value=string3, min_width=64)
color3_button = gr.Button(value="Update Color 3", min_width=64)
with gr.Column(min_width=100):
image4 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[3]))
image4_gr = gr.Image(image4, height=64, width=64)
string4 = "["+str(palette_of_the_design[3][0])+", "+ str(palette_of_the_design[3][1])+", " + str(palette_of_the_design[3][2])+"]"
color4_update = gr.Textbox(value=string4, min_width=64)
color4_button = gr.Button(value="Update Color 4", min_width=64)
with gr.Column(min_width=100):
image5 = Image.new("RGB", (512, 512), color=tuple(palette_of_the_design[4]))
image5_gr = gr.Image(image5, height=64, width=64)
string5 = "["+str(palette_of_the_design[4][0])+", "+ str(palette_of_the_design[4][1])+", " + str(palette_of_the_design[4][2])+"]"
color5_update = gr.Textbox(value=string5, min_width=64)
color5_button = gr.Button(value="Update Color 5", min_width=64)
with gr.Row():
reset_button = gr.Button(value="Reset the palette", min_width=64)
zero = gr.Number(value=0, visible=False)
one = gr.Number(value=1, visible=False)
two = gr.Number(value=2, visible=False)
three = gr.Number(value=3, visible=False)
four = gr.Number(value=4, visible=False)
color1_button.click(fn=demo.update_color, inputs=[color1_update, zero], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
color2_button.click(fn=demo.update_color, inputs=[color2_update, one], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
color3_button.click(fn=demo.update_color, inputs=[color3_update, two], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
color4_button.click(fn=demo.update_color, inputs=[color4_update, three], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
color5_button.click(fn=demo.update_color, inputs=[color5_update, four], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
reset_button.click(fn=perform_reset, inputs=[reset_button], outputs=[design, image1_gr, color1_update, image2_gr, color2_update, image3_gr, color3_update, image4_gr, color4_update, image5_gr, color5_update])
project_demo.launch()
|