|
import torch |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig |
|
import numpy as np |
|
from scipy.special import softmax |
|
import gradio as gr |
|
torch.cuda.is_available() |
|
|
|
model_path = "ltg/norbert3-base_sentence-sentiment" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path, trust_remote_code=True) |
|
|
|
def sentiment_analysis(text): |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores_ = output[0][0].detach().numpy() |
|
scores_ = softmax(scores_) |
|
labels = ['Negativ', 'Positiv', 'Nøytral'] |
|
scores = {l: float(s) for (l, s) in zip(labels, scores_)} |
|
return scores |
|
|
|
demo = gr.Interface( |
|
theme=gr.themes.Base(), |
|
fn=sentiment_analysis, |
|
inputs=gr.Textbox(placeholder="Write your text here..."), |
|
outputs="label", |
|
examples=[ |
|
["Woho, jeg fikk meg ny jobb!"], |
|
["Jeg skal jobbe med løver i den nye jobben min."], |
|
["Oj, en løve spiste den ene armen min.. Snakk om HMS :("], |
|
["På vei til sykehus.. Ønsk meg lykke til.."], |
|
["Supert! De må pokkern meg amputere hele armen.."], |
|
["Våkna opp fra operasjon, fått en robot arm. Im now terminator! Super opplevelse 10 av 10.."] |
|
], |
|
title='Sentiment Analysis App', |
|
description='This app classifies a positive, neutral, or negative sentiment.' |
|
) |
|
demo.launch() |
|
|