Spaces:
Runtime error
Runtime error
File size: 22,725 Bytes
733aa30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional
import torch
import torch.nn as nn
from fairseq import utils
from fairseq.modules import LayerNorm
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
from torch import Tensor
from .unify_multihead_attention import MultiheadAttention
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (1, x.shape[1], 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super().__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class TransformerEncoderLayer(nn.Module):
"""Encoder layer block.
In the original paper each operation (multi-head attention or FFN) is
postprocessed with: `dropout -> add residual -> layernorm`. In the
tensor2tensor code they suggest that learning is more robust when
preprocessing each layer with layernorm and postprocessing with:
`dropout -> add residual`. We default to the approach in the paper, but the
tensor2tensor approach can be enabled by setting
*args.encoder_normalize_before* to ``True``.
Args:
args (argparse.Namespace): parsed command-line arguments
"""
def __init__(self, args, drop_path_rate=0.0):
super().__init__()
self.args = args
self.embed_dim = args.encoder_embed_dim
self.quant_noise = getattr(args, 'quant_noise_pq', 0)
self.quant_noise_block_size = getattr(args, 'quant_noise_pq_block_size', 8) or 8
self.self_attn = self.build_self_attention(self.embed_dim, args)
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.activation_fn = utils.get_activation_fn(
activation=getattr(args, 'activation_fn', 'relu') or "relu"
)
activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
if activation_dropout_p == 0:
# for backwards compatibility with models that use args.relu_dropout
activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = args.encoder_normalize_before
self.fc1 = self.build_fc1(
self.embed_dim,
args.encoder_ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
args.encoder_ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.attn_ln = LayerNorm(self.embed_dim) if getattr(args, 'scale_attn', False) else None
self.nh = self.self_attn.num_heads
self.head_dim = self.self_attn.head_dim
self.ffn_layernorm = LayerNorm(args.encoder_ffn_embed_dim) if getattr(args, 'scale_fc', False) else None
self.w_resid = nn.Parameter(torch.ones(self.embed_dim, ), requires_grad=True) if getattr(args, 'scale_resids', False) else None
self.final_layer_norm = LayerNorm(self.embed_dim)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(
nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size
)
def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(
nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size
)
def build_self_attention(self, embed_dim, args):
return MultiheadAttention(
embed_dim,
args.encoder_attention_heads,
dropout=args.attention_dropout,
self_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
scale_factor=args.attn_scale_factor,
scale_heads=getattr(args, 'scale_heads', False)
)
def residual_connection(self, x, residual):
return residual + self.drop_path(x)
def upgrade_state_dict_named(self, state_dict, name):
"""
Rename layer norm states from `...layer_norms.0.weight` to
`...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to
`...final_layer_norm.weight`
"""
layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"}
for old, new in layer_norm_map.items():
for m in ("weight", "bias"):
k = "{}.layer_norms.{}.{}".format(name, old, m)
if k in state_dict:
state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k]
del state_dict[k]
if "{}.{}.{}".format(name, new, m) not in state_dict and "{}.{}".format(new, m) in self.state_dict():
state_dict[
"{}.{}.{}".format(name, new, m)
] = self.state_dict()["{}.{}".format(new, m)]
prefix = name + "." if name != "" else ""
for param_name, param_tensor in self.state_dict().items():
if (prefix + param_name) not in state_dict and param_name in self.state_dict():
state_dict[prefix + param_name] = self.state_dict()[param_name]
def forward(
self,
x,
encoder_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor] = None,
self_attn_bias: Optional[Tensor] = None
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, seq_len)` where padding elements are indicated by ``1``.
attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`,
where `tgt_len` is the length of output and `src_len` is the
length of input, though here both are equal to `seq_len`.
`attn_mask[tgt_i, src_j] = 1` means that when calculating the
embedding for `tgt_i`, we exclude (mask out) `src_j`. This is
useful for strided self-attention.
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
# anything in original attn_mask = 1, becomes -1e8
# anything in original attn_mask = 0, becomes 0
# Note that we cannot use -inf here, because at some edge cases,
# the attention weight (before softmax) for some padded element in query
# will become -inf, which results in NaN in model parameters
if attn_mask is not None:
attn_mask = attn_mask.masked_fill(
attn_mask.to(torch.bool),
-1e8 if x.dtype == torch.float32 else -1e4
)
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask,
need_weights=False,
attn_mask=attn_mask,
attn_bias=self_attn_bias
)
if self.attn_ln is not None:
x = self.attn_ln(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = self.dropout_module(x)
if self.w_resid is not None:
residual = torch.mul(self.w_resid, residual)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
return x
class TransformerDecoderLayer(nn.Module):
"""Decoder layer block.
In the original paper each operation (multi-head attention, encoder
attention or FFN) is postprocessed with: `dropout -> add residual ->
layernorm`. In the tensor2tensor code they suggest that learning is more
robust when preprocessing each layer with layernorm and postprocessing with:
`dropout -> add residual`. We default to the approach in the paper, but the
tensor2tensor approach can be enabled by setting
*args.decoder_normalize_before* to ``True``.
Args:
args (argparse.Namespace): parsed command-line arguments
no_encoder_attn (bool, optional): whether to attend to encoder outputs
(default: False).
"""
def __init__(
self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, drop_path_rate=0.0
):
super().__init__()
self.embed_dim = args.decoder_embed_dim
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.quant_noise = getattr(args, "quant_noise_pq", 0)
self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8)
self.cross_self_attention = getattr(args, "cross_self_attention", False)
self.self_attn = self.build_self_attention(
self.embed_dim,
args,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
)
self.self_attn_ln = LayerNorm(self.embed_dim) if getattr(args, 'scale_attn', False) else None
self.cross_attn_ln = LayerNorm(self.embed_dim) if getattr(args, 'scale_attn', False) else None
self.nh = self.self_attn.num_heads
self.head_dim = self.self_attn.head_dim
self.activation_fn = utils.get_activation_fn(
activation=str(args.activation_fn)
if getattr(args, "activation_fn", None) is not None
else "relu"
)
activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
if activation_dropout_p == 0:
# for backwards compatibility with models that use args.relu_dropout
activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = args.decoder_normalize_before
# use layerNorm rather than FusedLayerNorm for exporting.
# char_inputs can be used to determint this.
# TODO remove this once we update apex with the fix
export = getattr(args, "char_inputs", False)
self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
if no_encoder_attn:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = self.build_encoder_attention(self.embed_dim, args)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.ffn_layernorm = LayerNorm(args.decoder_ffn_embed_dim) if getattr(args, 'scale_fc', False) else None
self.w_resid = nn.Parameter(torch.ones(self.embed_dim, ), requires_grad=True) if getattr(args, 'scale_resids', False) else None
self.fc1 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
args.decoder_ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
self.need_attn = True
self.onnx_trace = False
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
def build_self_attention(
self, embed_dim, args, add_bias_kv=False, add_zero_attn=False
):
return MultiheadAttention(
embed_dim,
args.decoder_attention_heads,
dropout=args.attention_dropout,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
self_attention=not getattr(args, "cross_self_attention", False),
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
scale_factor=args.attn_scale_factor,
scale_heads=getattr(args, 'scale_heads', False)
)
def build_encoder_attention(self, embed_dim, args):
return MultiheadAttention(
embed_dim,
args.decoder_attention_heads,
kdim=getattr(args, "encoder_embed_dim", None),
vdim=getattr(args, "encoder_embed_dim", None),
dropout=args.attention_dropout,
encoder_decoder_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
scale_factor=args.attn_scale_factor,
scale_heads=getattr(args, 'scale_heads', False)
)
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def residual_connection(self, x, residual):
return residual + self.drop_path(x)
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
self_attn_bias: Optional[Tensor] = None,
cross_attn_bias: Optional[Tensor] = None
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
attn_bias=self_attn_bias
)
if self.self_attn_ln is not None:
x = self.self_attn_ln(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
attn_bias=cross_attn_bias
)
if self.cross_attn_ln is not None:
x = self.cross_attn_ln(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = self.dropout_module(x)
if self.w_resid is not None:
residual = torch.mul(self.w_resid, residual)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, self_attn_state
return x, attn, None
def make_generation_fast_(self, need_attn: bool = False, **kwargs):
self.need_attn = need_attn
def upgrade_state_dict_named(self, state_dict, name):
"""
Rename layer norm states from `...layer_norms.0.weight` to
`...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to
`...final_layer_norm.weight`
"""
# update layer norms
layer_norm_map = {
"0": "self_attn_layer_norm",
"1": "encoder_attn_layer_norm",
"2": "final_layer_norm",
}
for old, new in layer_norm_map.items():
for m in ("weight", "bias"):
k = "{}.layer_norms.{}.{}".format(name, old, m)
if k in state_dict:
state_dict[
"{}.{}.{}".format(name, new, m)
] = state_dict[k]
del state_dict[k]
if "{}.{}.{}".format(name, new, m) not in state_dict and "{}.{}".format(new, m) in self.state_dict():
state_dict[
"{}.{}.{}".format(name, new, m)
] = self.state_dict()["{}.{}".format(new, m)]
prefix = name + "." if name != "" else ""
for param_name, param_tensor in self.state_dict().items():
if (prefix + param_name) not in state_dict and param_name in self.state_dict():
state_dict[prefix + param_name] = self.state_dict()[param_name] |