File size: 2,705 Bytes
4750bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
from torch import nn
import torch.nn.functional as F

from configs.paths_config import model_paths


class MocoLoss(nn.Module):

    def __init__(self, opts):
        super(MocoLoss, self).__init__()
        print("Loading MOCO model from path: {}".format(model_paths["moco"]))
        self.model = self.__load_model()
        self.model.eval()
        for param in self.model.parameters():
            param.requires_grad = False

    @staticmethod
    def __load_model():
        import torchvision.models as models
        model = models.__dict__["resnet50"]()
        # freeze all layers but the last fc
        for name, param in model.named_parameters():
            if name not in ['fc.weight', 'fc.bias']:
                param.requires_grad = False
        checkpoint = torch.load(model_paths['moco'], map_location="cpu")
        state_dict = checkpoint['state_dict']
        # rename moco pre-trained keys
        for k in list(state_dict.keys()):
            # retain only encoder_q up to before the embedding layer
            if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
                # remove prefix
                state_dict[k[len("module.encoder_q."):]] = state_dict[k]
            # delete renamed or unused k
            del state_dict[k]
        msg = model.load_state_dict(state_dict, strict=False)
        assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
        # remove output layer
        model = nn.Sequential(*list(model.children())[:-1]).cuda()
        return model

    def extract_feats(self, x):
        x = F.interpolate(x, size=224)
        x_feats = self.model(x)
        x_feats = nn.functional.normalize(x_feats, dim=1)
        x_feats = x_feats.squeeze()
        return x_feats

    def forward(self, y_hat, y, x):
        n_samples = x.shape[0]
        x_feats = self.extract_feats(x)
        y_feats = self.extract_feats(y)
        y_hat_feats = self.extract_feats(y_hat)
        y_feats = y_feats.detach()
        loss = 0
        sim_improvement = 0
        sim_logs = []
        count = 0
        for i in range(n_samples):
            diff_target = y_hat_feats[i].dot(y_feats[i])
            diff_input = y_hat_feats[i].dot(x_feats[i])
            diff_views = y_feats[i].dot(x_feats[i])
            sim_logs.append({'diff_target': float(diff_target),
                             'diff_input': float(diff_input),
                             'diff_views': float(diff_views)})
            loss += 1 - diff_target
            sim_diff = float(diff_target) - float(diff_views)
            sim_improvement += sim_diff
            count += 1

        return loss / count, sim_improvement / count, sim_logs